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1 Introduction

What does it cost to abate carbon emissions? This question has been a building block of the
economics of climate change from the beginning. The famous DICE model, arguably the ,rst
ever Integrated Assessment Model (IAM), aimed at answering how much society should spend
on mitigation and adaptation, given the abatement cost, and damages resulting from increasing
atmospheric greenhouse gas concentrations. It relies on a typical neoclassical Ramsey growth
model in which consumption and investment would be chosen to optimize a long term growth
path (Nordhaus 1992). This approach has received both ,erce and modest critique. Most crit-
ics have argued that the damages from climate change were fundamentally misrepresented, en-
couraging delayed action (the most prominent example being Dietz and Stern 2015). Some have
found the macroeconomic fundamentals of equilibrium analysis to be unsuitable (Pollitt 2019;
Grubb et al. 2021b). On the issue of abatement cost disagreement was less of an issue for a long
time. The loose consensus was that reducing carbon emissions would prove to be a burden,
speci,cally in less advanced economies. Some partial equilibrium models, now known as En-
ergy System Models (ESMs), tried to get a re,ned understanding of the economic potential of
a decarbonized economy (an early example is Goulder and Schneider 1999). In policy, a crucial
hallmark of IAMs, the Marginal Abatement Cost Curve (MAC), which depicts the economic
cost over a given amount of abated emissions, became a crucially important policy tool.1 The
approach was questioned for the implication that costs were static and independent, but the
underlying idea remained unchanged (Kesicki and Ekins 2012).

Approaching climate change with cost-bene,t analysis came under much stronger scrutiny
around a decade ago. Climate scientists became increasingly con,dent about a core pillar of
climate analysis: The value of the climate sensitivity, the temperature response to a doubling
of carbon dioxide concentrations in the atmosphere. Due to the nature of the data available to
us in the near term, the community became con,dent that its likely range was 2°-4.5°C, with
no possibility to produce a narrower range.2 Weitzman (2009) showed that given this range

1In small-scale or analytic IAMs such as DICE, these are approximated by a di.erentiable function, while more
,ne-grained, policy oriented work uses a bottom-up approach to evaluate distinct policies.

2There are nuances to this metric mainly stemming from our understanding of natural carbon sinks and the dy-
namics of non-CO2 greenhouse gases. If human emissions ceded immediately, temperatures would continue
rising for about a decade, and then drop to an equilibrium of about 0.3°C lower. While this point seems to
be rather clear, the underlying range, the climate sensitivity, remains as a structural uncertainty. In highly sim-
pli,ed terms, this uncertainty can be explained as a signal-to-noise problem. A good summary of this can be
found in IPCC AR6 (2022, ch. 3).
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and some very lenient assumptions, the expected damages from climate change become quan-
titatively unconstrained. With that, the credibility of optimal warming targets, derived from
cost-bene,t analysis, was shattered. With the Paris Agreement, policy moved instead to carbon
budgets aligning with a mutually acceptable peak temperature. The uncertainty remains: For a
two third chance of meeting the 1.5°C target, the remaining CO2 budget is about 300±210 Gt,
a range exceeding the central estimate (Lamboll et al. 2022). To wit, at constant 2021 annual
emissions (≈ 39 Gt CO2), this puts us about 3 to 13 years away from breaching the primary
Paris Agreement target.

Given this degree of urgency, and the irrelevancy of a central tenet of economic analysis, why
would we still care about the cost of emission abatement? There are three major reasons. Firstly,
one seminal advancement in climate science was the recognition that a stabilized climate would
actually require zero anthropogenic emissions (Matthews and Caldeira 2008).3 The economic
consequence of that is quite radical: Every kind of human activity, give or take, has to switch
to a carbon-neutral technology, be compensated through Carbon Dioxide Removal (CDR) or
be stopped entirely for temperature stabilization to occur. We may be convinced that emission
reductions in large parts of the economy are bene,cial even without accounting for damages,
but that is certainly not the case for all sectors, communities and regions. Global bene,ts and
damages from emissions are highly unequally distributed (Oswald et al. 2021). Trillions of dol-
lars worth of fossil fuel assets incompatible with the Paris Agreement targets have to be stranded
(Semieniuk et al. 2022). And with fossil fuel demand likely peaking this decade (IEA 2022),
there are transitory costs to consider, resulting from the rapid down scaling of a deprecated en-
ergy system (Grubert and Hastings-Simon 2022).

Secondly, since decarbonization essentially means the complete replacement of the fossil cap-
ital stock, the macroeconomic e.ects could be sizable (Pisani-Ferry 2021). There is good ev-
idence that, beside regional disparities, in+ationary e.ects will be small and employment and
growth e.ects positive (Pollitt et al. 2017). However such an assessment would look quite dif-
ferently without the success of Renewable Energy Systems (RES) in recent years (see ,gure 1).
Widely acknowledged today, this is the outcome of industrial policy mainly in Germany and
China (IRENA 2021). But this is not what many IAMs scenarios would have predicted rela-
tively recently (Way et al. 2022). From a macroeconomic perspective we would want to know

3There is a large uncertainty to that, but this goes both ways: Temperature stabilization might need carbon re-
moval in excess of gross emissions or leave room for a residual, with a likely range of about ±4 Gt Carbon
Dioxide Equivalents (CO2E) (Allen et al. 2022).
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Figure 1: Historical Cost of Energy Supply Technologies

Cost curves of energy technologies in historical comparison, log scale. Wind and Solar: global average Levelized Cost of Energy (LCOE)
(IRENA), Batteries: cell costs (IEA/BNEF), PtX: capacity cost of proton-exchange membrane electrolyzer (IEA), Oil: Brent Crude (FRED),
Gas: US wellhead price (EIA), Coal: US average bituminous (EIA). Prices are not comparable in terms of useful energy, but electricity genera-
tion from fossil fuels has not notably improved over time. Source: Way et al. (2022), own calculations.

either way. Naturally, the cost of useful energy plays a large role in that. Deployment of RES
has also been the strongest driver of decarbonization. This trend is very pronounced in coun-
tries where domestic emissions have peaked and e.orts are supported by deployment policy
(Le Quéré et al. 2019). A reduction in energy consumption has contributed, but it is mostly
the declining share of fossil energy that has supported decoupling trends (see table 1). But the
world economy also emits well above 12 Gt CO2E of additional greenhouse gases from non en-
ergy use related activity, such as agriculture and land use (UNEP 2022). Parts of the transition
are already declared sensible business choices and development pathways (Wolf 2022; Burn-
Murdoch 2022). But the tail end of the abatement challenge still rests on far shakier grounds.

Lastly, the speci,c choices as to which technology to use and at what fraction, is going to de-
pend on their cost. Finding the one cheapest path to zero emissions is decidedly a futile exercise,
but that does not mean cost (and cost potential) are irrelevant. In order to describe plausible de-
carbonization scenarios and their outcomes, we have to make well-founded assumptions about
technology cost, material availability, potential scalability, labor requirements and so forth. Ex-
isting models have had a bad track record with that. To choose a particularly puzzling example,
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one core scenario utilized in IPCC SR15 (2018) featured carbon removal on the order of 20 Gt
CO2 per year, which amounts to roughly half of current annual emissions. We would rightly
doubt the physical possibility and cost-e.ectiveness of that. Given that national climate policy
is strongly in+uenced by the work of the Intergovernmental Panel on Climate Change (IPCC)
and the International Energy Agency (IEA), scrutiny is warranted about whether leading sce-
narios and models give useful guidance.

Table 1: Decomposition of Emission Reductions in Post Peak Countries
Percent reduction

due to...
energy use fossil share fossil e*ciency fossil emission

intensity
trade

Maximum 190 133 39 38 8
75th Percentile 56 73 22 4 0

Median 36 47 12 0 -3
25th Percentile 18 36 -14 -7 -14

Minimum 5 25 -85 -55 -78
Drivers of observed emissions reduction (2005-2015), as percentage of cumulative reduction, in a sample of 18 developed countries where
emissions have peaked. Country-wise, the ,rst four columns add up to 100 percent, trade is depicted as a leakage control. E*ciency reference
is primary to ,nal energy. Sample includes Austria, Belgium, Bulgaria, Croatia, Denmark, Finland, France, Germany, Hungary, Ireland, Italy,
Netherlands, Portugal, Romania, Spain, Sweden, United Kingdom and USA. Source: Le Quéré et al. (2019).

All three problemshave a common focal point: The cost of technology. Arguably then, a shift
away from cost optimization to cost-e.ectiveness, as it is often framed, makes a closer look into
the dynamics of technology deployment even more important.4 But can we predict how costs
will develop over time? All too conservative estimates have consistently resulted in pessimistic
outlooks. But are these cost reductions a ubiquitous phenomenon, and would they extend to a
decarbonized economy as a whole? Some observers are not convinced that technical change is
something we can rely on (Pisani-Ferry 2021). Modelers might argue that self-defeating prophe-
cies are a useful tool in policy advocacy and hence conservative assumptions about technical
progress are helping. But of course this can go both ways and stall progress instead.

This paper is an attempt to take stock of the situation. How are mitigation scenarios and
models addressing technical change? How have they fared so far and how can we improve
them? Two answer these questions, the rest of the paper proceeds as follows. After discussing
some methodological questions in section 2, section 3 will give a short review of how mitigation
scenarios performed in meta-studies of technology cost and deployment trends. This is the ev-
idence that necessitates a closer look into IAMs assumptions. Then, section 4 discusses aspects

4See IPCC AR6 (2021, ch. 1.7) for context on how the ’e.ectiveness’ framing came about.
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of technical change in mitigation modeling, in turn: Formal implementation (4.1), calibration
(4.2), performance metrics models use (4.3), interaction with broader model design (4.4) and
,nally technology representation outside the energy sector (4.5). Section 5 will conclude and
provide avenues for further research.

2 Remarks on Methodology

The questions set out in section 1 warrant some strategic remarks on how to approach them.
To start, I focus speci,cally on global assessments since (i) national studies often use similar
or derivative models, (ii) global assessments inform nation or region-speci,c research and (iii)
the choice of technology representation follows very di.erent theoretical considerations in a
national context. The latter are mainly due to market size relative to national policy scope,
spillovers, and regional variations (see these issues explored in Crassous et al. 2006). National
incentive structures arising from technical change, are expressly not the focus here. The next
issue concerns the selection of scenarios. In following the global scope, it makes sense to probe
recent work of the IPCC and the IEA. These are arguably the two most in+uential institutions
when it comes to climate policy on a global level. Assessments of both institutions will feature
in section 3, a review of comprehensive scenario assessments. The focus on models, as opposed
to scenarios, warrants justi,cation. It is apparent from scenario assessments that the underlying
models themselves must have introduced certain biases into global mitigation scenarios. This is
why the rest of the discussion (section 4) focuses on model structure and implementation. It is
essentially what scenario assessments recommend at the current state of research.

It turns out that this makes progress on ,nding de,nitive answers very hard. For a start, due
to largely obscured modeling decisions it is not possible to discuss the work of the IEA in more
detail. This only leaves the IPCC, speci,cally the most recent assessment report (IPCC AR6
2021). It’s role in relation to climate science is twofold: It builds a comprehensive and regular
review of the progress in recent literature and systematizes it. It also guides further research: In
mitigation, for example, by highlighting de,ciencies in models and scenarios, or by construct-
ing guideline scenarios such as the Illustrative Mitigation Pathways (IMPs) (explained in IPCC
AR6 2021, ch. 1). These are also used to classify research, and draw out trends that correspond
to one another across simulations.

With the current assessment cycle the IPCC author community has undergone e.orts to in-
crease transparency of scenario design. The scenario database allows for comparison between
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thousands of model runs and studies (IIASA 2022). A useful way to approach this whole body
of work is laid out by Koomey et al. (2019), who suggest decomposing macro trends in mit-
igation scenarios in a layered fashion, as an expansion of the Kaya decomposition. In theory
this would be a viable and e.ective approach for the question at hand, laying out which model-
speci,c assumptions drive technology adoption. Brockway et al. (2021) use it, for example,
to identify a potential underestimation of the macroeconomic rebound across scenarios. But
in the case of technology deployment the impacts on macro trends of the economy are not as
straightforward. For example, a scenario deploying large amounts of carbon removal could
achieve similar carbon intensity reductions as another based on renewable energy, but would
result in vastly di.erent technology choices. Yet, some issues discussed in section 4 could in-
deed be analyzed in a data-driven approach using the scenario database, and this paper can be
seen as a foundation for such research.

If scenario assessments point distinctly at models as a "culprit" but there is no clear idea as
to how to approach model output systematically, this leaves the models themselves to explore.
This will be the core of this paper. But model documentation is still a bottleneck even though
there has been a concerted e.ort to increase the transparency of IAMs modeling (IAMC 2022).
To the extent possible on that basis, model speci,cations will be discussed in section 4.

This leaves as question which models give a representative sense of current mitigation assess-
ments. Table 2 shows the simulation shares of the ten most used models for IPCC AR6 (2021)
together with their type and scope. In the past, authors have often classi,ed models along dif-
ferent dimensions or according to their theoretical background (Crassous et al. 2006; Farmer
et al. 2015; Dafermos and Nikolaidi 2022). At the current point in time these descriptions are
largely unhelpful. Due to their advanced, modular design, models can change fundamental as-
pects of their solution space, for example being able to run in general and partial equilibrium
mode. Hence today, the model type can mostly be interpreted as a guiding principle or modeler
philosophy. This may have some bearing on model outcomes regarding technology, brie+y dis-
cussed in section 4.4, but that is rather speculative. Finally, the documentation column shows
the sources and their respective dates for anything I will discuss related to speci,c model as-
sumptions. Notably, this information is up to a decade old and studies relying on these models
may make modi,cations. The author has gone to some length to access the most recent infor-
mation, but this does not mean studies featured in IPCC assessments have used these models
without major alterations. This is why I take a wider view, discussing a breadth of possible issues.

Choosing a set of models to discuss is made easy by lack of diversity. For Paris compliant

6



Table 2: Integrated Assessment Models for the IPCC’s Sixth Assessment Report
Model Type Documentation Regional Scope Percent share modeled

<2°C all scenarios
REMIND CGE, perfect foresight Luderer et al. (2015) Global 26 17
MESSAGE ESM, limited foresight Krey et al. (2020) Global 23 16
IMAGE system-dynamic, myopic Stehfest et al. (2014) Global 10 8
POLES ESM, myopic Keramidas et al. (2017) Global 9 7
WITCH CGE, perfect foresight Drouet et al. (2019) Global 8 9
COFFEE CGE, perfect foresight – Brazil 5 4
GCAM ESM, myopic Bond-Lamberty et al. (2022) Global 5 8
AIM CGE, perfect foresight – Japan, China 5 9
GEM-E3 CGE, myopic Capros et al. (2013) Global 4 3
TIAM ESM, perfect foresight – UK 4 4
other – – 1 14
The ten most commonly used IAMs in IPCC AR6 (2022). Leftmost columns show (i) the share of modeled scenarios that are compatible
with the Paris Agreement, with a 50% chance of staying below 2°C (n=700) and (ii) of all scenarios reporting ,nal emissions (n=1861). Model
type (Computable General Equilibrium (CGE),ESM, system-dynamic) refer to the modeling philosophy regarding macro trends, since most
models can run in either a partial or general equilibrium today.
Sources: IAMC (2022) and Krey et al. (2019) and own calculations based on IIASA (2022).

scenarios, 76 percent of the simulations are driven by ,ve models, for all 1800 scenarios which
report emission data that ,gure is 58 percent (last two columns in table 2). I simply focus on
the ten most used ones, minus those with a regional scope.5 It is still hard to show anything
conclusive about the consequences model assumptions. Sognnaes et al. (2021) and Krey et al.
(2019) use an inter-model comparison approach to probe model assumptions with respect to
CDR utilization.6 Something similar has been done in the past when many models introduced
technical change into their structure (Crassous et al. 2006). Alas, such an approach exceeds
the scope of this work. Before it would yield anything conclusive, the possible roots of biases
present in the existing model set would have to be explored anyway.

Due to these issues of transparency and scope, the discussion to follow has to remain largely
exploratory in nature. Identifying critical assumptions quickly becomes an archeological ex-
ercise, and documentation is often not comprehensive enough.7 Some leads can also prove

5If we consider a broad model base from diverse backgrounds to be of value, this lack of diversity is less than
optimal.

6The term Carbon Dioxide Removal is not used fully consistently in the literature. I refer to the de,nition of
IPCC AR6 (2021, Annex I), where it is taken to mean any kind of durable storage of atmospheric CO2, in-
cluding anthropogenic enhancement of carbon uptake, such as reforestation or soil sequestration.

7The most widely used models, such as REMIND, IMAGE, MESSAGE or WITCH are open source platforms
today, but documentation e.orts are not always up-to-date.
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inconclusive, since without running simulations there is no way of knowing whether certain
constraints are binding or not. It should still be kept in mind that the matters to be discussed
e.ectively cover thousands of studies, because these models are used so extensively all around the
world. Hence, short of developing new models from scratch (Dafermos and Nikolaidi 2022;
Hoekstra et al. 2017), a black box approach could identify common biases (Koomey et al. 2019)
and sensitivity studies could probe model constructions (Sognnaes et al. 2021). This work in-
tends to map out a foundation for all three of these areas of research.

A ,nal remark regarding terminology: I refer to the sample of models discussed here as large-
scale IAMs since di.erentiating them from analytical models is the only sensible ad-hoc dis-
tinction one can draw at this stage. Theoretical background and development history almost
certainly plays a role (see section 4.4), but given their +exible, platform-like nature, outcomes
depend on a host of other assumption sets as well.

3 Technology in Ex-Post Scenario Evaluation

The physical potential of low carbon energy sources, only considering yield, environmental and
land-use constraints, never was in much doubt.8 Even two decades back, the IPCC estimated
that the potential Solar Photovoltaics (PV) alone exceeding primary energy demand projections
of this century (Creutzig et al. 2017). In contrast to that, the underestimation of actual deploy-
ment successes has been consistent in research, industry and policy work for several decades
now. There is a small but comprehensive number of meta-studies on past scenario performance
that demonstrates this. The initial focus was put on PV deployment trends, arguably the most
obvious one, but biases have recently been shown to extend into cost predictions as well and
span a wider range of technologies critical to decarbonizing the energy supply.

The ,rst suspicions of systematic biases were raised surrounding the over-reliance on bio-
energy. Creutzig et al. (2017) show that assuming endogenous technical progress, 50% of elec-
tricity could come from PV in a cost-e*cient energy system. The study analyzes hundreds of
scenarios including from the IEA, the IPCC and Greenpeace. Across the board, these were
inconsistent with historic deployment trends of PV. With predictions less than half of actual
deployment in 2015, IPCC scenarios for the Fifth Assessment Report were already hopelessly
out of date upon ,nal publication. Generous policy support for RES, increased costs among

8This is following the IPCC de,nition of ’technical potential’ IPCC AR6 (2021, Annex I), which intends to
capture deployment limitations as opposed to production limitations.
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competing technologies (mainly Carbon Capture and Storage (CCS) and nuclear power) and
"atypical technical advancement" were seen as likely reasons (IPCC SR15 2018). It seems plausi-
ble, in hindsight, that the physical similarity of bio-energy to fossil fuels, and its apparent advan-
tages in terms of transport and storage, has contributed to the relative weight researchers put
on it. Net zero – the idea that climate stabilization demanded zero anthropogenic emissions –
was also relatively new (Allen et al. 2022). In a world where net zero would not be a necessity,
the land-use requirements of large scale bio-energy production certainly are less of a problem.9

It is worth mentioning that today’s installed PV capacity of about 760 GW only just lies in the
upper range prediction of Creutzig et al. (2017). For IPCC AR6 (2021) a major focus was to
correct for the over-reliance on CCS, but that did not exactly solve the pessimistic assessments
regarding RES.

To understand this systematic pessimism a little better, more recent scenario assessments fo-
cus directly on cost forecasts, as opposed to deployment. Early climate economics literature
frequently discussed the possibility that solar and wind could become cheap, replacing more
expensive fossil sources gradually (Crassous et al. 2006; Nordhaus 2013). Today, there is am-
ple evidence that large parts of the energy supply can be economically replaced by RES. Studies
di.er as to the extent of that, but it is directly visible from cost comparisons10 (IRENA 2021),
it has been shown system-wide, for example for the European power sector, with and without
factoring in the Emissions Trading System (ETS) (Victoria et al. 2020; Rosslowe and Cremona
2022), for a two-third decarbonization of power in China (He et al. 2020) and also globally
(Bogdanov et al. 2021). Of course such studies are forecasts and have to rely on ESMs or IAMs
themselves. In other words, the question of forecasting accuracy and bias remain, even though
the outlook for RES has already changed dramatically.

Evidence of underestimation of PV potential is unequivocal, but model features and sce-
nario design are hard to entangle. Jaxa-Rozen and Trutnevyte (2021) used a statistical learn-
ing methodology on a large sample of IPCC, non-IPCC and gray literature mitigation studies
to identify what drives potential estimation in terms of deployment. Some signi,cant in+u-
encing factors are quite obvious: The publishing institution, climate policy assumptions and

9A good summary of the problems associated with bio-energy can be found in (IPCC AR6 2022, ch.7). When
accounting for food security, the global potential in 2050 is estimated to be less than half of today’s primary
energy demand, which does not account for the energy needs in storing the carbon produced at that scale.
Impacts on other ecological dimensions and a potential to worsen anthropogenic emissions from land use are
signi,cant barriers as well.

10See section 4.3 for more detail
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publication date in+uence PV deployment strongly. However, much variation is indeed driven
by model construction. Analytical models, as opposed to the large-scale IAMs featuring in
IPCC scenarios, estimate stronger solar power deployment. Whether technical change is en-
dogenous or not plays only a minor role (for deployment, importantly), and so do foresight (my-
opic/perfect) and model closure (partial or general equilibrium). Various types of hard and soft
deployment constraints are the most important factors.11 Jaxa-Rozen and Trutnevyte (2021)
propose stronger model diversity to account for this. Their sample was taken from the ,fth as-
sessment report, but so far such proposals have not changed the dominance of certain models
(see table 2).

Victoria et al. (2021) look more closely at the technology potential of PV and ,nd dated cost
assumptions in most IAMs. Good spatial and temporal resolution seem to favor PV, the former
because it reduces rivaling uses compared to more stylized "frictional" representations and the
latter for reducing various matching potentials between intermittent sources. Increasing reso-
lution, especially in the temporal dimension, also faces computational trade-o.s.12 On the cost
side, they point to a steady decrease of module prices, but they do not probe models with re-
spect to that. They point to signi,cant potential due to the majority of the world’s population
living in areas where solar +ux is not seasonal. Of course such a single technology perspective
has tight limits and can overlook crucial aspects of decarbonization or growth potential. In the
case of PV, signi,cant resources need to be expended for transmission, storage, sectoral cou-
pling (electri,cation of power demand) and grid stability (Victoria et al. 2021; Creutzig et al.
2017; Parzen et al. 2022). Yet, quite conclusively, models underestimated deployment and cost
reductions of PV.

A much smaller sample of 22 studies (IEA and the most prominent IAMs) is probed by Xiao
et al. (2021), focusing explicitly on cost assumptions, but this time for wind and solar energy.
Interestingly, they not only look at investment cost or Capital Expenditure (CapEx) but also
compare LCOE, a standard per-energy metric for power supply technology, with current auc-
tion results.13 For large scale supply such as Concentrated Solar Power (CSP), o.shore wind
and utility scale PV, they ,nd that all but one of the studies examined predict lower cost in
2050 than what auction results were in 2019. This striking mismatch is despite the fact that in

11They di.erentiate between hard constraints as ,xed growth limits and soft constraints as adjustment costs.
12The modeling strategy of the IEA is a good example. In the past, their model used hourly resolution on a global

scale, but in order to make that feasible, explicitly refrained from endogenous technology representation (IEA
2021).

13The question of cost metrics is discussed in section 4.3 and LCOE are explained in the appendix.
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terms of CapEx, the underlying studies di.er in outcomes by a factor of ,ve. Even the most
optimistic model assumptions result in bad predictions. Also, modelers accounted for tech-
nical progress a.ecting the investment cost but neglected other, more important dimensions
along which technologies change. A common suggestion to improve data and update model
assumptions regularly is echoed here (Xiao et al. 2021).

A very recent study by Way et al. (2022) expands on previous e.orts and garnered widespread
attention in climate policy debates (Ives 2021). They compare IPCC scenarios in the sixth
assessment report to a simple but complete representation of a decarbonized power system
comprised of solar, wind, battery storage and Power-to-X (PtX).14 The analysis employs non-
deterministic forecasting for technology, based on previous work that aimed to improve the
empirical foundation necessary for mitigation modelling (Farmer and Lafond 2016; Nagy et al.
2013; Lafond et al. 2020). The scenario assessment rea*rms what others have found before:
Even the most recent and most optimistic IAM predictions for IPCC AR6 (2021) assume no-
ticeable, structural breaks with historical technology trends. Crucially the trends analyzed here
are not in terms of deployment or investment cost, as in the literature discussed before, but
in terms of LCOE and as a function of cumulative deployment. In a fast transition scenario,
which assumes historical growth rates for the aforementioned technologies, the overall system
saves several percentage points worth of global GDP over the next decades. This is compared to
a no-transition baseline scenario, mirroring common assumptions in IAM modelling. Though
simpli,ed, the model of Way et al. (2022) demonstrates conclusively that existing IAM vastly
overestimate the costs of key low-carbon technologies.

The common threads in the literature discussed above are twofold. The ,rst one is that ex-
post scenario evaluations reveal a persistent, widespread and surprisingly large underestimation
of the economic potential of low emission energy supply technologies. The second one is that
so far nothing seems to indicate that speci,c assumptions of single studies are to blame, but
that instead scenarios seem to inherit relevant characteristics from the underlying models. To
the author’s knowledge no one so far has suggested or demonstrated that any single model fares
signi,cantly better than others. None of the popular models stand up to scrutiny with respect
to technology potential and Way et al. (2022), IRENA (2021), and Victoria et al. (2021) make
the convincing case that there are no obvious reasons why historical cost trends should markedly
slow down. This means that the models urgently need adjustments

14PtX refers to a variety of solutions aimed at converting electricity to some other form of energy. For the power
system itself, it mainly serves as storage and usually involves hydrogen from electrolysis.
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How the IPCC frames technical progress
Before discussing further details of model assumptions it is useful to take a look at how the
IPCC currently views these issues. The 6th Assessment Report features an entire chapter on
technical change and technology representation in mitigation scenarios (ch. 16 IPCC AR6
2021). The report takes a rather broad sweep through the issues related to technical change,
which corresponds to the assessment that technical change needs deeper study and is a major
source of uncertainty for climate policy. However, it summarizes some general characteristics of
technical trends that seem to be fairly well established across the literature (see Koh and Magee
2008; Grubb et al. 2021a; Grafström and Poudineh 2021; Wilson 2012; Rodrik 2014). (i) Tech-
nologies move through distinct stages of development, deployment, di.usion and saturation.
(ii) Technical progress is closely linked to economies of scale, and technologies that are suited
for mass production tend to realize steeper cost reductions. (iii) There are issues arising from
the problem of system boundaries and proper metrics to assess costs, investments and improve-
ments over time. (iv) Technical change requires a broad range of policy considerations, intro-
ducing spill-over, but also ,rst-mover advantage. (v) Modelling continues to have considerable
di*culties inproperly accounting for technical change. For current climate scenarios, (vi) IAMs
"tend to underestimate innovation in energy supply but overestimate the contributions by en-
ergy e*ciency" (IPCC AR6 2021, ch. 16, p. 27).

Now, a central goal of the IPCC reports is to provide a comprehensive summary of the cur-
rent scienti,c viewon issues related to climate change. Evidently, it is not a lackof awareness that
lead to the persistent underestimates outlined in this section. This rea*rms the suspicion that
the socioeconomic assumptions made in models are o. and need revision. I will take a broad
approach to that and discuss the aspects that drive cost projections ,rst (sections 4.1 to 4.3). Way
et al. (2022) and Victoria et al. (2021) argue that deployment forecasts have improved, but not
conclusively. This is why sections 4.4 and 4.5 also discuss possible barriers to deployment in
scenarios.

4 Technical Change in Integrated Assessment
Models

The way technology does or does not progress has always been a core question in environmen-
tal economics. The lack of a feasible technological alternative to coal power drove the worry
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of Jevons (1865) that England’s industrial revolution may be short-lived. Georgescu-Roegen
(1981), one of the forebears of ecological economics, emphasized that technology ultimately
cannot surmount the physical limits of the earth. Stiglitz (1980) responded with optimism,
pointing to human ingenuity always ,nding new ways to make use of earth’s endowments. It
may be the long-term perspective inherent to environmental questions that has repeatedly di-
vided positions into static and dynamic views of technology.

Oddly, early climate economics sits ,rmly in the static camp. The predecessor of modern
IAMs provided a link between neoclassical growth theory and the physical understanding of
our atmosphere (Nordhaus 1992), but it did so with the baked-in assumption that carbon is
immutably of value to the economy. Emission abatement would necessarily incur a cost on
society. As we have seen in section 3 that is a very odd assumption with mountains of evidence
contradicting it.15 The technology set available to us changed drastically over time and was
heavily in+uenced by mitigation policy.

Technical change: An analytical frame
How does that change the way we think about the cost of abatement? Attempts to acknowl-
edge technical change in an analytical, stylized way are surprisingly recent. Here, I use Grubb
et al. (2021b) and Grubb et al. (2022) to show how the temporal dynamics that result from
endogenous technical change can generally be understood. This formalizes some basic conclu-
sions that are worth highlighting before looking into more complex model setups. A simple
DICE-like abatement cost curve, that denotes annual welfare cost of emission abatement, such
as in (Nordhaus 1992) serves as a comparison.

DICE abatement cost: !" = #(")$ with #(") = %&' ( − % (") (1)

In DICE, annual abatement cost !" depend on the amount of abated emissions #("), which
are represented as a deviation of annual emissions % (") from a reference %&' ( . An exponent $
denotes that the larger the fraction of abated emissions, the more costly marginal abatement
(!′

" ) becomes. To account for a change in technology, $ is re-calibrated, which is what has been
done in DICE model updates (Grubb et al. 2022). Note that in equation (1) abatement incurs
constant cost over time: Unless the fraction of emission reduction changes, annual costs stay

15There is the question about whether cost-e*cient abatement should be included in the baseline when con-
structing mitigation scenarios (Nordhaus 2013). But this is quite literally an academic debate and is almost
never done well in practice (See for example IEA (2021) and discussion in Way et al. (2022)).
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constant.16 This would be perfectly adequate if we believed that all progress in technology is
exogenous: There is no need to anticipate cost reductions from policy, or demand. In fact,
quite the opposite: Waiting for progress – a change either in $ or %&' ( – would be rational.
The implication of endogenous change is the exact opposite: Some fraction of the abatement
cost will recede. A simple way to approximate this behavior is a "pliable" abatement cost curve.

Pliable abatement cost: !" = (1 − )) #(")$ + )"̂#′(")$ (2)

In this representation, a share ) ∈ [1, 0] of the abatement cost is dependent on the deriva-
tive #′("). A year-on-year increase in abatement is subject to this fraction of the abatement cost.
A second parameter, "̂ represents the time frame it takes for learning processes to materialize,
such that a shock-like abatement is still more costly than a managed and gradual one.17 Initially,
abatement costs are high and radical policy shifts do not pay o.. But together with the tempo-
ral, pliable element the economy follows path dependency in both directions. A given level of
ambition incurs cost now, but makes decarbonization cheaper after implementing mitigation
policy. Depending on ), a large or a small fraction of the abatement cost would recede over
time.

This alsohighlights apotentialdownside of technical progress. If clean energybecomes cheaper,
not only do abatement costs fall but energy demand may grow more strongly. This macroeco-
nomic rebound would o.set some decarbonization progress – scenario realism in that regard is
also disputed (see especially Brockway et al. (2021)). But this is also, as Way et al. (2022) call it,
"a good problem": It enables clean leapfrog growth for developing countries and emerging mar-
kets, that historically followed less carbon intensive growth paths than industrial nations (Burn-
Murdoch 2022). "Green" rebounds also typically do not follow the same carbon intensity as the
overall economy, as instead, clean technologies crowd in greener production along their supply
chain (Rosenbaum 2019). This e.ect is strengthened, if inputs are allowed to progress them-
selves, counteracting fossil technology lock-in.18

16This representation dos not recognize market distortions, distributional or capacity e.ects, ,nancial constraints
and much more. Some of these omissions have more deeply rooted consequences that cannot be captured by
a simple abatement cost curve (see (Pollitt 2019; Grubb et al. 2013; Dafermos and Nikolaidi 2022)). Both
equations (1) and (2) are further simpli,ed here for demonstration purposes.

17Ironically, this "inertia" characteristic is what may be a separate cause for slow adoption of new technologies in
IAMs (see section 4.4).

18Note that this refers to the emission rebound, not the overall energy rebound or macroeconomic rebound. A
clarifying discussion can be found in Lange et al. (2021).
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4.1 Formalization of Technical Change

In today’s large-scale IAM, abatement policy is also subject to cost constraints, but reduced-
form abatement cost such as in equations (1) and (2) are replaced by a ,ne-grained bottom-up
representation of the energy system and other sectors.19 In other words, a microeconomic repre-
sentation of technology is needed for these models. I do not intend a comprehensive discussion
of the economics of technology, technical change and its deep implications in economic theory,
but it is useful to give some context.

What constitutes technology is ultimately determined by a researcher’s perspective: We can,
for example, di.erentiate a procedural and an input-output view (Dosi and Nelson 2010). The
former would be interested in the various interactions comprising its production or its use, what
we could call routines. The latter would be interested in de,ning precisely the outcome of an
equally precisely de,ned set of requirements, what we could call a recipe. The term ’technol-
ogy’ is also historically closely linked to knowledge. Of course, economic theory is much more
comfortable with the recipe concept: It is often interested in functional outcomes (Hoekstra
et al. 2017). Naturally, modeling does not really have a meaningful choice here: Models need
to imply a recipe, linking inputs and outputs. We can classify technical change in terms of its
functional impact, loosely following Junginger and Louwen (2020).

(i) Through coincidence, or disruptive innovation: By de,nition this kind of progress
cannot be anticipated, which implies that it also cannot be modeled. Sometimes, a back-
stop technology serves as a stand-in for such ill-de,ned technical possibilities (Nordhaus
et al. 1973).20 Note that model omission should not be equated with irrelevance and
separate empirical literature on this topic is very broad (Grubb et al. 2021a).

(ii) Through time, or learning-by-waiting: This represents purely exogenous technical
change, and corresponds to equation (1). On a microeconomic level it is sometimes also
referred to as Moore’s Law. Moore found a doubling rate over time of components in
integrated circuitry (Moore 1965). Such regularity is observed in many industries (Farmer
and Lafond 2016).21

19A few economists disliked this direction of structural realism, that intended to capture systemic interactions
which drive macro-dynamics. The unavoidable lack of transparency is certainly a drawback, but it seems the
alternative, proposed for example by (Pindyck 2017), has not much to o.er in return.

20WITCH features an explicit backstop for nuclear power generation, for example.
21The term "learning-by-waiting" is never used in the literature, but it is an apt description of what it implies.
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(iii) Through research, or learning-by-searching: This is a form endogenous technical
change whereby research is driving progress. It originally found its way into IAMs be-
cause of the similarities between their neoclassical macroeconomic core and the work
by Romer (1989). Computational and analytical issues made it hard to go beyond that
(Crassous et al. 2006). In large-scale IAM the same concept is also applied to single tech-
nologies.

(iv) Through deployment, or learning-by-doing: Fully endogenous technical change as-
sumes that technologies improve simply by producing more of them. This has deep roots
in the history of economic thought (Arrow 1962; Wright 1936). There have been many
proposals in the past on how it works, some of which are discussed below. In technology-
speci,c contexts it is also referred to as Wright’s Law.

The latter three have all found implementation in large-scale IAMs to varying degree. But it
is learning-by-doing that will be the main focus of the discussion, since this is overwhelmingly
suggested by the evidence discussed in section 3 and evidence on single technologies (Farmer
and Lafond 2016). A brief formal discussion will provide some clarity. Again, the primary
focus of this section is not a causal theory of technology, although the mechanics of statistical
aggregation and the endogenous nature of economic processes have indeed been proposed to
drive Wright’s Law (Yelle 1979; Sahal 1979; Farmer and Lafond 2016).

Assuming we have unbiased metrics for technology cost and performance (say, the market
price and energy output), formalization and estimation of (i) to (iii) as well as combinations of
these are straightforward. Starting with exogenous progress, Moore (1965) expressed technical
progress as a doubling rate over time.

Moore’s Law: !" = !0'−*" (3)

Technology cost !" are a simple exponential of time " with a constant *, scaling the initial
cost !0. Solving for the time it takes to cut the cost in half yields the doubling time:

Doubling time: +, =
ln 2
*

, with * = ln
(
1 +

&
100

)
(4)

Thisway, theMoore’s law exponent canbe expressed in termsof a growth rate & . This relation
is inexorable: Nothing can in+uence technical progress and nothing can prevent it. Empirically,
it is nothing more than an exponential trend projection (Arrow (1962) referred to it as "a con-

16



fession of ignorance"). It cannot satisfy from a theoretical standpoint – particularly if ex-ante
policy evaluation, such as is the case with IAMs, is the focal point. But models do use it, or even
assum constant cost (Grubb et al. 2021b).

What would drive progress other than the mere passing of time? The idea that experience
plays a role in production cost is immediately intuitive and played a major role in post-war eco-
nomics (Hogan et al. 2020). Its empirical validation is also older than Moore’s work and goes
back to Wright (1936). Wright discovered a regularity in the manufacturing cost of airplanes,
explained by cumulative units produced.

Wright’s Law: !- = !0-−.
Σ (5)

Here, technology cost !- only depend on the cumulative units produced, -Σ. Interpreted
narrowly again, it represents pure learning-by-doing, where -.

Σ is the cost scaling factor of the
next unit.22 The resulting functional relationship is often referred to as the learning curve. For
the simple Wright’s Law we can de,ne a constant learning rate, which is the cost reduction a
doubling in cumulative production yields.

Learning rate: / = 1 − 2. (6)

Again, the basic notion of Wright’s Law has found overwhelming evidence across many in-
dustries. There are many variants to it and di.erent approaches to causal explanations. Arrow
(1962) interpreted "learning" very literally, and thought of it as the improvement of workers’
skills. Goddard (1982) interpreted it as pure economies of scale and speci,ed it over annual in-
stead of cumulative production. Sahal (1979) gives statistical intuition to how it arises from a
process with multiple inputs. Section 4.2 aims at discussing some empirical issues surrounding
it, but it describes technological progress remarkably well.

That is, up to a certain point: Particularly the front and tail end of the log-linear learning
curve seemed not to match complete adoption cycles very well. Some studies assumed concavity
on the left side, meaning slower cost reductions at the beginning (Yeh and Rubin 2012). Sim-
ilarly, the tail end seemed to be in doubt in long-term studies, suggesting a decreasing learning
rate and asymptotic behavior of cost (Klepper and Graddy 1990; Yelle 1979).23 One intuition

22For the purpose of clarity I denote the negative exponent sign to indicate falling cost.
23The combination of equations steepening and +attening leads to an S-shaped deployment curve that is now

widely regarded as the typical adoption cycle for scalable technologies (way2021; Crassous et al. 2006). The
resulting speci,cation is a logistic function that is log-symmetric, something that also ,nds widespread use in
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for these +oor costs is that some elements of a production process may bene,t from learning,
while others do not, the latter taking up an increasing share of unit cost. Curiously, IAMs only
utilize a +oored variant – assuming a steepening by default would have improved the anticipa-
tion of PV cost reductions section 4.2. An asymptotic variant of Wright’s Law is sometimes
referred to as a DeJong speci,cation.

DeJong Model: !- = !0

(
$ + (1 − $) -.

Σ

)
(7)

It introduces $ as a factor of compressibility, representing a fractionof theproductionprocess
that can be improved, while the rest cannot. This introduces a +oor cost, at which a technology
will not improve further. Some models approximate this behavior by using a step function,
meaning a Wright’s law speci,cation with a +oor cost at a threshold.

Floor cost: ! ( = lim
-Σ→∞

!- = $!0 (8)

Lastly, learning-by-searching is often implemented in conjunction with learning-by-doing
to better represent nascent energy technologies. In the early stages of development and deploy-
ment, markets are often limited and funding is always split between expansion of capacity and
Research and Development (R&D) (Jamasb 2007). This led to the two-factor learning curve,
proposed for energy models by Kouvaritakis et al. (2000).

Two-factor learning: !- = !00
−.
Σ 1−2

Σ (9)

This is also commonly dubbed a learning-by-searching model. In this case, 1Σ denotes R&D
spending at time ". In the context of mitigation modeling this typically means policy allocation
of research funding, but it has also been used to investigate deployment subsidies and crowding-
in (Wene 2008).

For intuition, ,gure 2 shows a stylized log-log representation of Wright’s Law (equation (5)),
a steepening learning curve (Stanford-B model), the DeJong model (equation (7)) and a logistic
deployment path. Logistics and Stanford-B representations are not used in the model sample so
omit a formal presentation. However, logistics are a common feature when it comes to resource
depletion (Luderer et al. 2015; Keramidas et al. 2017; Dafermos and Nikolaidi 2022).

ecological models.
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Figure 2: Learning Curve Speci$cations

Stylized log-log representation of di.erent learning functions. DeJong and Stanford-B behave asymptotic to Wright’s Law, with the former
approaching a cost +oor and the latter steepening. Wright’s Law converges to zero, which is why it is often considered unrealistic. The logistic
combines the two asymptotic variants to match a full, stylized adoption cycle from introduction to maturity.
Source: Badiru (1992), own calculations.

Model implementation of technical change
When turning the attention to model implementation the historical context is interesting. The
climate economics literature began to think about technical change early on, but it did not be-
come a central theme for a long time. Since economist’s IAMs originated from growth models, a
natural point of integration was to switch over to endogenous growth theory. In an early version
of such a model technical change results from carbon tax induced R&D (Goulder and Schnei-
der 1999). General equilibrium theory proved particularly cumbersome with respect to this
problem because of computational constraints and unstable solutions (Crassous et al. 2006).
Quite astonishingly, Grubb et al. (2021b) writes that even though most models had incorpo-
rated some form of endogenous technical change by the time of the Fifth IPCC Assessment
Report (2014), simulations were mostly run without it to save on compute time (see section 4.4
for some discussion). The computational complexity inherent in what amounts to introduc-
ing several di.erential equations into perfect foresight models led to rather ad-hoc approaches
to the problem. Technical change was either incorporated through a research mechanism akin
to endogenous growth theory or was applied to the overall energy e*ciency of the economy
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(Baccianti and Löschel 2014). These di*culties certainly contributed to the rise of partial equi-
librium models ESM, focusing only on the most important economic sector in terms of carbon
emissions.

Assuming that technology progresses has unequivocal consequences for mitigation policy:
It lowers the cost of doing so. Less clear is the question of how far this carries and what the
consequences would be in terms of policy. As the model base for the work of the IPCC grew in
complexity and size, the question of technical change and how to deal with it got its own con-
certed e.ort with the Innovation Modeling Comparison Project (summarized in Crassous et al.
2006). This spawned a number of hybrid model approaches such as WITCH and REMIND
that tried to make use of these ,ndings and merge the top-down and bottom-up approaches
of climate modeling (Farmer et al. 2015). With respect to climate policy, technical progress is
the focal point of some key developments in the academic discussion. That early mitigation
e.orts, even though expensive, would eventually pay o., was raised by the Stern Review, for
example (Weitzman 2007). It is one reason why decarbonization was re-framed as a systemic
transformation, not a problem of a single market externality.

Table 3 summarizes how technical change is treated in the model sample. The most com-
monly used IAM, REMIND features learning-by-doing with cost +oors. It also features learn-
ing for electric vehicles and electricity storage, making it the broadest implementation in the
set. Learning does not extend to carbon capture or fossil fuels (Luderer et al. 2015). Treating
technology as exogenous is apparently a deliberate decision for MESSAGE (Krey et al. 2020). In-
stead, a range of technology scenarios are prescribed – none of which match current evidence, as
Way et al. (2022) have shown section 3. These constrain technology growth and improvements
alongside the narratives of the IMPs for IPCC AR6 (2021). In IMAGE, learning parameters are
so-called scenario "drivers". This means that they are standard inputs for the design of scenar-
ios to model di.erent trajectories (Stehfest et al. 2014). Scenarios may hence easily deviate from
model assumptions. POLES also di.erentiates learning curves per technology and uses Wright’s
Law, but Keramidas et al. (2017) only refer to calibrations based on literature from an EU re-
search project (ADVANCE). Witajewski-Baltvilks et al. (2015) was a core study in this project
(see discussion in section 4.2), but it is unclear how this is re+ected in POLES. The WITCH
model is a product of the concerted e.orts in the 2010s to improve technology representation
in IAM (Crassous et al. 2006). It features di.erentiated learning curves per technology and
a variety of backstops, but all technologies have cost +oors (DeJong speci,cation). It also has
a very detailed energy CCS representation, aligning with past scenario prescriptions. Again,
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the model does not align better or worse with historic observations. A completely di.erent
approach is taken in GCAM. Despite featuring a reasonably detailed structure of the energy
and power systems, technical change is not implemented at the level of technologies. Instead,
the macroeconomic MAC is shifted to the right, e.ectively making a given level of abatement
cheaper. It is unclear how this translates into detailed sectoral pathways, since this is the only
way technological progress is documented in Bond-Lamberty et al. (2022). GEM-E3 bears the
somewhat frustrating marks of the past, namely the need to account for macroeconomic con-
sequences of energy price shocks, a macroeconomic hallmark borne out of the experience of
the 1970s (Blanchard and Gali 2007). Learning-by-doing is implemented in the sense that the
macroeconomy can reduce overall energy intensity (Capros et al. 2013). Reductions in carbon
intensity on the other hand, which is ultimately what cheap zero emission technologies enable,
is, per design, only possible by increasing energy e*ciency.24 Confusingly, GEM-E3 still fea-
tures a detailed power sector representation, but much like in early approaches, it is entirely
static in terms of economic trade-o.s.

Table 3: Technical Change in Integrated Assessment Models
Model Speci,cation Technologies
REMIND learning-by-doing (DeJong) Solar, Wind, BEV, electricity storage

learning-by-waiting Fossil fuels (transport, heat, power)
MESSAGE learning-by-waiting Exogenous technology pathways based on IMP narratives
IMAGE learning-by-doing (Wright’s Law) Energy e*ciency, fossil fuels and RES
POLES learning-by-doing (Wright’s Law) Energy e*ciency, fossil fuels and RES
WITCH learning-by-doing (DeJong) Solar, Wind, energy CCSa

learning-by-searching (DeJong) Energy e*ciency, batteries (BEV)
two-factor Backstops (Nuclear, Oil, Industry)

GCAM learning-by-waiting Shift of the macroeconomic MAC
GEM-E3 two-factor Energy e*ciency
Formal representation of technical change in sampled models. In this context, RES refers to the four most important solar and wind technolo-
gies (PV and CSP, on- and o.shore), which all models feature. Coverage of technologies is fairly limited. (a): Four di.erent routes of fossil fuel
power plants with CCS. Note that this does not include CDR technologies such as Bioenergy with Carbon Capture and Storage (BECCS) and
Direct Air Capture (DAC). The former is often modeled separately for its sizeable implications on environmental systems, the latter is often a
reference point for the least cost-e*cient backstop. Sources: Model documentation, see table 2 for detailed references.

Overall, the possibility that progress in low-carbon energy supply technologies may be en-
dogenous is well represented today, especially in the more commonly used models. Note that
these are, without exception, deterministic representations. Whether a stochastic version of

24It is true that RES deployment can improve energy e*ciency, but that primarily depends on the way primary
energy is measured (see IPCC AR6 (2021, Annex I) and Brockway et al. (2021) for a discussion).
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technical change would be more adequate for forecasting is another matter (a version of Moore’s
Law with error propagation is demonstrated in the appendix). This would account for the
fact that technological development is additive in nature and builds on past successes and fail-
ures. But it adds computational complexity and using calibrated ranges (see for example Samadi
(2018)) seems to be a useful simpli,cation. The overall coverage of technologies is somewhat
limited and power coupling and storage technologies, such as PtX and batteries are often not
modeled. It is crucial to understand that neglecting progress in fossil energy technologies, which
most models do, is not necessarily a helpful choice, as it could be a major source for rebound
e.ects. Given adequate learning parameters and cost +oors, models should be able to antici-
pate further progress, at least for the set of technologies represented here. The next question is
whether these parameters are decently calibrated or not.

4.2 Calibration of Technical Parameters

If implementation of endogenous technical change is not the issue it could be a matter of cali-
bration – in other words an empirical question. The various learning speci,cations discussed in
section 4.1 can all be estimated with relative ease by using log-log models.25 There are also some
variations that have been proposed, such as industry scale (Goddard 1982) a combined Moore’s
and Wright’s Law (Nordhaus 2014), or multivariate approaches (Nemet 2006). The literature
doing these estimates is very extensive and spans almost a century. For obvious reasons, energy
technology has taken center stage in recent years and Wright’s Law or learning-by-searching
(equation (5) and equation (9)) are popular models for the sake of their simplicity (Grubb et al.
2021a). Some conceptual theoretical frameworks have been proposed over the years to build a
theoretical explanation for technology-speci,c learning by doing. Learning was understood in
a more literal sense in early ,rm-level studies, so they linked it to labor conditions and worker
churn (Yelle 1979). Sahal (1979) was the ,rst to recognize that learning happens mostly in com-
plex production processes as an aggregate result of ,nite and discrete changes in parts and rou-
tines. Goddard (1982) emphasized classic economies of scale of production plants. More re-
cently, economies of scale are understood to play out in very di.erent dimensions, so that the
technology itself is either scalable or not (Farmer and Lafond 2016). Malhotra and Schmidt
(2020) recently synthesized these ideas into a two-dimensional classi,cation of (i) degree of

25In general, the term learning curve is used very loosely in the literature. I use it in the following as meaning any
endogenous representation of technical change, not something akin to learning-by-waiting (equation (3)).
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complexity and (ii) degree of customization. They ,nd that a combination of high complex-
ity and low needs for customization is most conducive to learning-by-doing, and propose that
knowledge can be embedded in the production capital under these conditions. Overall though,
the literature of decades over decades repeats that the subject is elusive by nature and conceptual
frameworks can only give rough guidance.

Unsurprisingly, this situation has led to a lot of reluctance and mistrust in what little applied
theory there is. There are simply severe conceptual issues with learning rate estimations that
have arguably driven modelers to calibrate conservatively.26 I will discuss the most important
ones here, as they do intersect with the way models are constructed. I discuss these underlying
empirical issues of learning rate estimation ,rst. After that, section 4.2.1 and 4.2.2 discuss the
actual calibrations. Since learning-by-searching implementation has, so far, not received consis-
tent criticism it is left out here.

Omitted variables and lack of explanatory value
Equations (3) and (5) are basically univariate equations. This is obviously not ideal from a statis-
tical standpoint: They leave no room for di.erent hypotheses to be tested and have very limited
value when interpreting results. Nemet (2006) criticized single-factor estimates for PV on the
grounds that there are much more sophisticated and detailed models to be applied to readily
available data. They propose controlling for commodity prices, module e*ciency and plant
scale, among others, to give a better appreciation of the exact nature of technical progress. This
issue has been raised before: Sahal (1979) notes "worrisome ambiguities" as to "what is being
learned and by whom". They show that the log-constant process implied in Wright’s Law can
be the aggregate result of several discrete and linear steps of progress in intermediaries.

In the context of IAM calibration this critique is somewhat misplaced, but seems to have
driven some reluctance in accepting endogenous speci,cations (Grubb et al. 2021a). Since IAM
are essentially forecasting tools, what matters is not causal representation but the accuracy of
the relation that is being represented. In the case of technical change this means that it does not
matter what drives progress as long as the predicted cost are accurate under a given scenario.
The learning curve has a reduced form character in IAMs (Wiesenthal and Dowling 2012).

Witajewski-Baltvilks et al. (2015) expand this point further: The relation of factors in+uenc-
ing cost that are accounted for in models, and those that are not, have to be constant over time

26Strictly speaking, most of these critiques apply to Moore’s Law as well, and even to ,xed cost assumptions.
Maybe it is better to have a bad theory of technical change than having none at all – but the problem just was
not regarded in that way.
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and over the scenarios created with the models. For estimation, this means that each model
needs its own estimates instead of relying on previous literature. For example, a model utiliz-
ing two-factor learning curves, such as WITCH, would have to use estimates from a two-factor
econometric model. This may seem like an obvious point, but it is not at all clear that mod-
els are calibrated like that. Luderer et al. (2015), Stehfest et al. (2014), and Keramidas et al.
(2017) do not specify sources and instead point to other literature in general. The other model
documentations in the sample just specify values. Only for WITCH there seem to have been
custom studies (Drouet et al. 2019). Simultaneously, the lack of statistical rigor in the litera-
ture on technical progress has been raised repeatedly and may have veered modelers to calibrate
conservatively (Nemet 2006; Nordhaus 2014; Grafström and Poudineh 2021).

Issues of data quality and interpretation
In almost all learning studiesmarket prices are assumed tobe ameaningful proxy for technology-
speci,c progress. This is often a point of criticism (e.g. Samadi (2018)), but the meaning for
modeling is never explicated fully. Market prices are a good cost metric precisely so long as
markups stay constant over time. In standardmicroeconomic theory onewould expect constant
markups only in near perfect competition markets. Especially in early stages of a technology’s
adoption cycle that is strong assumption. On the contrary, interactions of market power with
experience gains have been suspected as one of the drivers of early steepening of learning curves
(Yelle 1979; Goddard 1982). The result of that would be a steepening of the cost progression,
much like the Stanford-B representation in ,gure 2. No model from the IAM sample uses such
a speci,cation. It could be argued that learning-by-searching assumptions are used instead to
cover the early stages of technology development (Drouet et al. 2019).

The twomostprominentRES technologies, wind and solar, are not exactlynew. Even though
hardly any past study overestimated deployment, learning rates seem to have stayed somewhat
constant for large enough panel data, with large variations between studies (Grubb et al. 2021a;
Samadi 2018). As a caveat, there has been an acceleration this decade, discussed below. In any
case, constant rates surely are not a good approximation for nascent technologies, that will play
a major role in decarbonization, such as electrolysis, batteries or biofuels (Grubb et al. 2021a;
IEA 2022).27 There are other issues attached to the question of data selection of course, but
again: What matters for a modeling perspective is that the reduced form relation is an accurate

27Part of the challenge here is of course that the expectations attached to certain technologies can depend on their
potential. However, the technical requirements of net zero emissions and mostly intermittent energy sources
do prescribe at least some residual roles to a certain set of supply side technologies.
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representation. The larger question about cost metrics is discussed in section 4.3.

Reverse causality and policy in&uence
Cumulative demand can induce price reductions, but of course we would normally expect the
reverse causality as well: Lower prices induce demand. If exogenous factors in+uence prices, this
can lead to a biased estimator for the real learning-by-doing coe*cient, as shown for example
by Nordhaus (2014). A short formal exposition is given in the appendix. Note that this bias
does not in+uence a baseline case without policy-induced demand, as we would simply expect
the observed trend to continue. For the same reason, system-dynamic approaches such as Way
et al. (2022), which simply prescribe historical trends, are not a.ected by this. The Nordhaus
(2014) model also ,nds reasons for more ambiguous biases, but in general the concern was an
upward bias in the learning rate. This may generally be justi,ed, but we have seen that decar-
bonization scenarios have rather indicated the opposite conclusion (section 3). There are in fact
well-founded reasons to dismiss overly cautious assumptions.

The ,rst problem is that estimating a time trend and a learning rate simultaneously, which
would alleviate reverse causality, leads to strong multi-collinearity. This is due to the fact that
in most cases, production (and thereby experience, as measured in Wright’s Law) increases ex-
ponentially over time, exactly mimicking the behavior of a linear time trend. Although not
based on decarbonization technologies, Lafond et al. (2020) use a natural experiment approach,
where time and experience are not correlated as strongly. As the US prepared national defenses
in World War II, the federal government imposed what amounts to a price insensitive demand
shock for military equipment on the economy, increasing defense spending by a factor of 30
in two years. As costs were secondary to victory, and spending was drastically reduced after
the war, two demand shifts can be used to test for confounding exogenous factors. With this
data set they ,nd that an experience interpretation is robust to exogenous factors, but also that
learning-by-doing varies strongly by the type of technology. Especially for scalable, large volume
supply chains such as infantry equipment, exogenous factors were not as important.28

A second problem is that a core prediction of a combined model as in equation (12) is a re-
duction of the observed learning rate under deployment inducing policies. However, evidence
shows that thismaynot always be the case. Wei et al. (2017) identify structural breaks in learning

28This is one of the many con,rmations found in the literature that Goddard (1982) was not too far o. the mark
with the idea that economies of scale drive learning-by-doing. However, for similar reasons discussed here a
scale speci,cation is neither easily distinguishable from one over cumulative production, nor would it neces-
sarily change calibration of IAMs.
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curves to present evidence for the opposite: A policy induced steepening of the learning curve.
With respect to solar energy, they ,nd breaks in the US and Germany shortly after the introduc-
tion of tax credits and feed-in-tari.s, respectively.29 Similar results are obtained across di.erent
technologies (lighting, fuel cells) and di.erent types of regulatory changes (tax incentives, e*-
ciency standards). There are very plausible reasons why policy could increase learning: If ,rms
view policy measures as a signal for long-term support, they would ramp up R&D e.orts. This
would register in Wright’s Law as a steepening. Another possibility is an induced scaling-up
of production, that anticipates the future growth. Wei et al. (2017) do not test robustness or
direction of causality however, so these ,ndings are, to date, preliminary.

This positive interaction of policy and learning progress is generally not well studied with
the only other recent example being Van Buskirk et al. (2014). This is somewhat surprising,
since the idea that policy drives technical change is a central pillar in frameworks of green indus-
trial policy (Rodrik 2014). Even more so, the study of learning-by-doing is in fact historically
closely linked to industrial policy. Lafond et al. (2020) give a good overview of this earlier body
of work, most of which focused on military technology. Some interesting questions that oc-
cupied these studies were for example whether capital accumulation or worker experience were
of greater importance, whether R&D increased with demand and over contract designs, and
how inter-plant spillover in+uenced cost improvements. Economists and political science schol-
ars have recently begun to discuss a more planning centered approach to the energy transition
(Krahé 2022; Grubert and Hastings-Simon 2022). Indeed, the focus of the learning literature
on military technology is not a coincidence. More speci,cally, a planned approach could well be
conducive to technical progress in key areas, and the historical context this literature emerged
from suggests exactly that. We have to leave this as an open question here, but likewise it seems
important to recognize that cost and technology dynamics were a much more prioritized issue
in the post-war era of military industrial policy. This is for the simple reason that the heart of the
matter, identifying characteristics inherent to technologies, is not left to the market and private
actors alone, but of national interest. It is again, for the transition to a decarbonized economy.
Robust empirical a*rmation and theoretical exploration of such policy induced cost drivers
could help in the context of e.ective mitigation policy design. More so, in the context of sce-
nario modeling, learning rates endogenous to policy would represent somewhat of a paradigm

29Breaks are identi,ed by application of the Akaike Information Criterion, which optimizes model errors over
the degrees of freedom introduced. The results are ’event agnostic’ breaks, exactly the opposite of what a ,xed
e.ects model, for example, would identify.
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shift.

4.2.1 Calibration of Learning Rates

With all that in mind a look into the empirical literature and model calibrations is su*ciently
contextualized. Even though the literature on technology di.usion goes back multiple decades,
there is no evidence for adequate anticipation of RES trends, particularly for PV. Mirroring
what has been shown in section 3, even single-technology empirical studies seem to have been
consistently underestimating technical progress. This leads to the fairly puzzling through line
that this pessimistic bias has been discussed extensively for decades now, without being thor-
oughly remedied. Most contributions raise reservations against a naive learning curve approach
and that is of course warranted.30 Re,ned approaches to the problem have recently emerged
that may not give increased precision, but at least increase con,dence in the applied methodol-
ogy.

Older empirical studies on PV handily demonstrate the persistent di*culties in anticipating
the successes of RES, so it is best to start o. there. Note, that this is just to illustrate the issue
– there are many other examples of early pessimistic studies, as Creutzig et al. (2017) review.
Much prior to concerted e.orts to improve technology representation in energy and climate
models Grübler et al. (1999) point to the shortcomings of the largely static modeling stock in
both the top-down and bottom-up traditions.31 They observe learning rates in capacity cost for
photovoltaics (20%), wind (20%) and gas turbines (10%) and show that cost reductions in PV
have been very persistent since the 1970s. A "radical" scenario based on the MESSAGE model
produces 100 GW of installed photovoltaics capacity in 2100. This is almost an order of magni-
tude o. of the 843 Gigawatt (GW) actually installed in 2021 (IRENA 2021). In+ation adjusted,
their projected module prices for 2100 are close to the global average total installed cost of to-
day (830 versus 857USD/Kilowatt (kW), own calculations). Subsequent studies continuously
validated the persistent improvements observed before, but remained conservative themselves.
Without invalidating the disruptive progress underway, Nemet (2006) uses a multi-factor ap-
proach to gauge drivers of improvements. One scenario, where 30 Terawatt (TW) are installed
in 2050 – entirely plausible given current market growth rates – reaches an in+ation adjusted
module price of 870USD/kW. The same can be said of a contribution by Wene (2008): Only

30With "naive" I refer here to a simple application of the univariate Wright’s law.
31This is at a time when DICE-inspired macro models and sub-system dynamic models still largely existed next to

each other and were not integrated to the degree they are today.
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a hypothetical radical innovation scenario can just about match current prices. It is di*cult to
assess ad-hoc why this underestimation is so consistent, although a common theme is the worry
about intermittency. The learning-rate literature frequently stresses the short-term character
of the approach, something that does not align well with the needs of decarbonization scenar-
ios (Malhotra and Schmidt 2020; Samadi 2018). However, it cannot be ruled out entirely that
estimations are biased upward, too (see table 4).

Now, how do model calibrations compare to empirical results? A thorough meta-analysis of
learning rate studies cannot be conducted here, much less over multiple technologies. Instead,
I use two recent meta-studies from (Samadi 2018; Malhotra and Schmidt 2020) as a reference.
Clear statistical support is found for the link between experience and cost for RES but also for
fossil fuel technologies (the latter mostly single-digit percentages). Various multivariate estima-
tions are common, especially controlling for R&D and commodity prices. None of the controls
seem to systematically alter the results, but Samadi (2018) do not conduct a meta-regression.32

Commodity price and market power controls have been frequent in recent literature, and im-
proved statistical ,t. A time control such as proposed by Nordhaus (2014) is also regularly
done, but con,rm the suspicion by Lafond et al. (2020) that neither ,t nor central estimator are
meaningfully improved in doing so. The most commonly used variables are installed capacity
(dependent) and capacity cost (independent), presumably because of data availability. Again,
studies using di.erent metrics do not seem to produce meaningfully higher (or lower) learning
rates or better ,ts. The exception here is wind power, where the highest results (learning rates
of up to 32%) are reported for generation cost. Malhotra and Schmidt (2020) also collect and
synthesize results, roughly in line with (Samadi 2018).

In general, model calibrations seem to align with meta-study recommendations for learning
rates. However, it may be that conservative model calibrations are just a matter of inheritance
from the learning literature itself. Again taking Samadi (2018) as a recent example, they sum-
marize "plausible" results. But what is deemed so is left unexplained, and it is not at all clear if
this involves a selection of the sample based on some plausibility criteria. For example, the afore-
mentioned results for wind are out of what Samadi (2018) deem the acceptable range. It could
be that this re+ects the skepticism stemming from the empirical di*culties explained above. Be-
sides that, the sampled studies often span very disparate time samples, some going back to the

32To the author’s knowledge there are no meta-regression studies in the recent literature. This is somewhat sur-
prising, but may be due to the methodological di*culties of properly controlling for varying and overlapping
panel data in use.
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Table 4: Learning Rates in Integrated Assessment Models
Wind Solar CCS Storage Coal Gas

Onshore O.shore PV CSP

Meta Analysesa
high 12% 10% 23% 12% 12% 21% 5% 15%

central 5% 3% 20% 8% – – 0% 6%
low -3% -5% 15% 3% 2% 12% -5% 2%

REMINDb 12% 12% 20% - - 10% - -
IMAGEb 20% 20% 20% 20% - N/A 5% 5%
WITCHb 10% 13% 17% 10% 3-6% N/A - 5%
Wright’s Law (2010-21)c 38 ±10% 22 ±9% 38 ±5% 19 ±22% - – - -
Learning rates for di.erent technologies from recent meta-analyses with ranges, model calibrations as per documentation and a "naive"
,rst-di.erence application of Wright’s Law on the most recent available global average generation cost data with standard errors. For nuclear
energy, studies ,nd consistently negative learning rates, which is also missing from model calibrations. But since nuclear does not feature
heavily in mitigation scenarios, I omit it here. N/A means that the corresponding model does not feature a dedicated storage technology –
WITCH and REMIND instead require dispatchable generation capacity when intermittent resources achieve high market shares. Storage
values are based on a mix of battery chemistries and a mechanical short duration storage, similar to how REMIND models it. Way et al. (2022)
uses similar calibrations to the ones implied in the meta-studies, but since all studies need to de,ne a "synthetic" technology, I do not conduct
an estimate for storage. Since there is no comparable data, I also omit estimates for Coal, CCS and Gas.
Sources: (a) Samadi (2018), Malhotra and Schmidt (2020), and Junginger and Louwen (2020), (b) model documentations (see table 2), (c)
own estimates based on IRENA (2021) and equation (10).

1970s. Using this literature values, as documentations claim, then assumes that learning rates
are invariant over time.33 In contrast, early learning studies often treat Wright’s Law as a short-
term estimation tool. Hence, another reference is needed, if only to adjust to more recent data.
For that purpose I use the following ,rst-di.erence, ,xed-e.ects consistent model proposed by
Way et al. (2022) and Lafond et al. (2018), but I drop the error propagation, since it does not
alter the estimator (see appendix 6). Crucially, I use LCOE data, not installation or capacity
cost, from IRENA (2021) for the time period of 2010 to 2021. This has its problems too, but
it is in line with recommendations of meta studies (Samadi 2018).

log !" − log !"−1 = −. (log -" − log -"−1) + 3" (10)

The left-hand side of equation (10) is the ,rst-di.erence log of cost !" , and the right-hand
side is the ,rst-di.erence installed capacity -" .34 Table 4 compares these results to those from

33For models that use a DeJong speci,cation, such as REMIND and WITCH, this is a particularly curious jux-
taposition, since they assume non-constant learning rates.

34This estimator takes care of omitted variable bias, but it should be kept in mind that I estimate over installed ca-
pacity insteadof cumulativehistorical capacity. This is notuncommon in the literature (Junginger andLouwen
2020), but due to capacity depreciation learning rates are strictly higher when doing it this way. How the
models implement this is not clearly explained, but given that no documentations expressly cite their initial
deployment values one can assume that they use installed capacity as well.
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the two meta-studies (Samadi (2018) and Malhotra and Schmidt (2020)) and the calibrations
employed in REMIND, IMAGE and WITCH. The large deviations produced by the model in
equation (10) has at least two reasons. The ,rst one is the short time series, which coincides with
a steepening of cost progression in wind and solar. In the case of PV and CSP this likely mimics
in part the structural breaks identi,ed in Wei et al. (2017), again without a de,nitive causal rela-
tion to policy changes. The second one is that it estimates over generation cost. The samples of
Samadi (2018) and Malhotra and Schmidt (2020) contain too few studies doing the same, so it
is not possible to say de,nitively whether this matches literature values, but section 4.3 discusses
a few reasons why we would expect di.erent values. It must be emphasized that this is not in-
herently a "better" estimate, but is intended as a point of reference. A reasonable calibration is
another matter, but it is obvious from this that the model calibrations do not re+ect recent cost
progressions, and that meta-studies obfuscate this. Grubb et al. (2021a) examine some studies
based on their sample time frame and con,rm this "speed-up" for wind, but yet again only in
studies specifying over capacity cost.

4.2.2 Calibration of Cost Floors

As previously discussed, REMIND and WITCH employ a DeJong speci,cation of learning-
by-doing, meaning that there is a cost +oor below which technology cannot improve further.
Recall from section 4.1 that the learning rate then asymptotically approaches zero.35 This means
that +oor costs matter instantly in a simulation, such that the calibrated learning rate is never
actually maintained. As a point of reference, table 5 shows the cost +oors employed in both
models in comparison to current global average data from IRENA (2021). Since all sampled
models do not explicitly model battery or electrolysis storage via hydrogen or derivatives, these
are not included here.36 Similarly, for the backstops in WITCH and the vehicle prices in RE-
MIND it is di*cult to ,nd meaningful comparisons. Both models seem to be more optimistic
for large-scale energy systems, which strongly contradicts the general notion that scalability of
production is what drives most cost progression (Samadi 2018; Lafond et al. 2018; Malhotra
and Schmidt 2020).

Unfortunately there is no straightforward way to compare the "e.ective" learning rate re-

35Both Luderer et al. (2015) and Drouet et al. (2019) explicitly state that their cost curves are not linear approxi-
mations but indeed follow asymptotic +attening.

36Instead, they work with grid +exibility requirements or construct a synthetic storage technology (Luderer et al.
2015).
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Table 5: Floor Cost in Integrated Assessment Models
Wind Solar

Onshore O.shore PV CSP
Assumed cost +oors (USD/kW)

REMIND 900 900 500 1300
WITCH 500 900 400 1500

Actual total installed cost (2021, USD/kW)
IRENA 1325 2858 857 9091
Cost +oors employed in REMIND and WITCH, compared to current global average IRENA (2021). Values are not
in+ation adjusted, sincemodel documentationdoes not explicate how the simulation startingpoint in+uences,xedprices.
IRENA data depicts global average total installation cost, which is close to what models use (overnight installation cost,
see Luderer et al. (2015)). Sources: See table 2 and IRENA (2021).

sulting from a DeJong speci,cation to the values presented in section 4.2.1. Recall from equa-
tion (8), that the cost +oor depends on the calibration of the initial cost !0 and the compress-
ibility factor $. The e.ective learning rate on the other hand, when de,ned analogously to
equation (6), would depend on the compressibility factor $ and cumulative deployment -Σ.
The e.ective learning rate therefore depends on !0, which is not documented. Needless to say
that the closer the cost +oor to real-world observations, the stronger the dampening e.ect, and
so e.ective learning in both models for PV and onshore wind is likely dampened.

The original DeJong model also had a theoretical foundation, the idea being that some pro-
duction inputs do not bene,t from learning-by-doing (Yelle 1979). Judging from the data pre-
sented in section 4.3 there could be some reason to deviate from a simple Wright’s law for RES
systems. Given that speci,c cost and yield vectors improved at di.erent speeds, cost +oors could
approximate that. However, this would also imply using di.erent learning rate calibrations than
the overall rates commonly estimated in the literature, such as in (Samadi 2018). But even ap-
proaching the problem from this perspective is fraught with errors. Some authors suggest using
multiples of the raw material input prices as a cost +oor, since commodity prices are often stable
over the long term and will take up an increasing share of overall cost (Junginger and Louwen
2020, p. 136). However, this entirely neglects substitution of materials or an increase in material
e*ciency.

In essence, there is little rigorous empirical support behind the ad-hoc assumptions on +oor
costs, and little in the way of sound methodology to rely on. Luderer et al. (2015) and Drouet et
al. (2019) just specify values and these seem to be solely based on expert judgement. Given that
this is also a common modeling practice outside the sample discussed here, it seems to be an issue
that needs addressing on more thorough grounds (Way et al. 2022). As intuitive as they may
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be, to the author’s knowledge there are no established methodologies to give accurate forecasts
for cost +oors. Identifying structural breaks in learning curves, such as done in Van Buskirk
et al. (2014) and Wei et al. (2017) could be a way to identify +attening of technical progress. But
biasing results against historical trends simply for the sake of intuitiveness seems a poor choice
given the track record documented in section 3.

4.3 Cost Metrics and Scope of Change

The last section brie+y touched upon another challenge when modeling technologies, which is
how to actually measure cost. In economics, this problem is nothing unfamiliar: The links be-
tween market prices, costs and value are fuzzy and contested. Early in technology’s deployment
cycles this is of course exacerbated by price and market uncertainties. With respect to energy,
more so to electric power, we might be lured by the textbook properties of the good: There are
few more homogeneous products we could think of than charged electrons. However, energy
technologies have undergone substantial changes in terms of their physical properties and the
way they interact with one another. Ultimately there is no single, superior way to measure and
compare technology performances, much less so over time (Way et al. 2022). This should be
obvious: In whatever way we de,ne a technology, it has multiple properties that decide in var-
ious ways over its utility in a wider context and system. But from a modeler’s perspective this
is a di*cult spot to be in: There is no easy way of knowing beforehand how structural model
decisions guide scenarios into all too rigid outcomes.

This is one reason why ESM modeling now commonly employ Agent-based Model (ABM)
frameworks (for an early review, see (Weidlich andVeit2008)). If reward structures anddecision-
making is more heterogeneous, the emerging opportunities for "useful" behavior must not rely
on the social planner to understand them beforehand. Hoekstra et al. (2017) remarks that even
performance metrics themselves are usually geared towards incumbent technologies and actors
– one reason why ",rm" generation and capacity provision might have taken a center stage in
the modeling of IAMs (Drouet et al. 2019; Luderer et al. 2015; Krey et al. 2020). There is a long
line of research into status quo biases and the role of expert opinions in rea*rming them. Agent
based modeling approaches try to learn from that and may, in the future, be able to provide
more comprehensive analysis than more rigidly structured IAMs (Farmer et al. 2015; Hoekstra
et al. 2017). This is not the place to discuss these issues extensively, but is important to keep
in mind two things: (i) The modeling approaches used in IAMs might be overly in+uenced by
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biases themselves and (ii) there may be proven modeling techniques that are able to solve is-
sues surrounding innovation more comprehensively. Precisely because ABM structures are not
as rigid in their decision-making processes they are deemed to be more successful in predict-
ing network interactions in evolutionary, innovating systems (Farmer et al. 2015). For example,
they have been successfully employed in predicting rapid BEV adoption in the past. In Sha,ei
et al. (2012) agents were allowed to have di.ering utility values about refueling ranges and be
in+uenced by peers in their opinions towards vehicle types. Even in scenarios where gasoline
prices do not increase37 adoption rates follow exponential trends, closely matching empirical
data in Iceland.

The back-and-forth between the IAM community and energy system modelers also has a
long tradition (see section 4.4) and will probably continue to be fruitful in the future. Here, I
can only take a more humble approach. I demonstrate how the measurement of performance
and cost has in+uenced models, as well as the empirical studies they are based on, in the past.
Due to a lack of in-depth studies for other technologies I only discuss these issues conceptually
with the examples of wind and solar energy. The second part to this is how costs are actually
modeled in comparison.

Installation and Generation Cost
Recall that many learning rate estimates, as well as early meta studies, such as Creutzig et al.
(2017) used installation cost and nominal capacities as performance metrics (sections 3 and 4.2).
This is the reason why newer studies try to use generation cost in their calibrations (Way et al.
2022), particularly as it aligns better with the way models optimize scenarios. On the empirical
side the most important reason for the use of installation cost is that these are readily available
data directly facing the market. For example, almost all studies surveyed in Samadi (2018) on
wind power use turbine prices as a cost metric, simply because it is the most accessible. Some do
cross-checks with installation cost, which include construction and ,nancing. But this misses
major parts of the advancements in wind turbine design. More lightweight construction has al-
lowed for longer blades and higher turbines, which enables the exploitation of both weaker and
more stable wind resources (Bolinger et al. 2022). Performance and "viability" improvements
like these are not visible in market prices, but instead improve the market value of the technol-
ogy. In o.shore wind installations, an increase in the installation costs has also been driven by
the underlying economics, since moving farther o.shore allowed access to better wind resources

37The price is of course the only driver in a typical IAMs
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(IRENA 2021). The progress in wind turbines has therefore mostly resulted from an increase
in the capacity factor, de,ned as the ratio of nominal capacity to actual average production.

For solar PV, improvements are less complicated, but learning studies mostly focus on mod-
ule costs (Samadi 2018). This hides some signi,cant improvements in module lifetime and an
increase in the capacity factor of utility-scale installations, enabled by better control electronics
(IRENA 2021). Victoria et al. (2021) expects capacity factor38 improvements for PV in par-
ticular as the bulk of installed capacity slowly moves towards the equator (Victoria et al. 2021).
Lifetime improvements could come from second use of degraded solar modules and is still com-
pletely understudied. For large-scale installations such as CSP, capacity factors are less of a re-
liable metric, as investments are typically very sizable. Raw project data such as reported by
IRENA (2021) is not a good indicator of technical-inherent progress in that regard. (Bolinger
et al. 2022; Ray 2021) use a harmonizing methodology to account for these factors, but the way
this is done strongly depends on the technology in question and cannot be answered ad-hoc.

Figure 3: Decomposition of Cost Improvements in Renewables

Improvements (USD) of LCOE in wind turbines (1982-2020) and utility scale photovoltaics (2007-2020) in the US. For lack of data points,
,rst years are averaged (wind: 4 years, solar: 3 years). Improvements in the capacity factor for wind have been driven by installation height,
photovoltaics have improved in lifetime. Note that due to co-dependencies, factors are not completely additive. Source: Bolinger et al. (2022).

Figure 3 shows the harmonized results from Bolinger et al. (2022) for wind and solar power.

38the capacity factor relates energy output to nominal capacity, see below.
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This kind of ,ne-grained analysis is di*cult to conduct and typically only possible for very lim-
ited datasets (in this case for a short and recent time period in the US). One other major driver of
cost improvements across both were the Weighted Average Cost of Capital (WACC). Globally,
improvements of ,nancing bottlenecks is a key priority in decarbonization policy particularly
as renewable energy is relatively capital intensive (IEA 2023). As Bolinger et al. (2022) show,
even in the US ,nancing conditions for RES still improve, which is not always visible in ad-
hoc assumptions about installation costs. The IEA for example has three di.erent capital cost
assumptions for the entire globe (IEA 2022).

For these reasons, newer empirical studies often use levelized cost metrics. A formal descrip-
tion can be found in the appendix – they provide a metric for the cost of electricity generation.
This captures a wider range of dimensions technology evolution, but still must rely on gen-
eralizations for data gaps. To dispel the notion that this is a conclusive way of dealing with
technology assessments, we can look at batteries and storage technologies. Again for reasons of
data availability Way et al. (2022) treat batteries in the same ad-hoc manner as many learning
rate studies and only apply learning to the price per storage capacity. By design, this must be an
underestimate, since lifetimes will certainly improve in the future. More generally recent stud-
ies suggest severe limitations to levelized cost metrics when it comes to storage technologies, as
they are highly sensitive to the system state. Parzen et al. (2022) propose to expand valuation
based on market potential, which is designed to assess various kinds of interactions between
grid design, placement of resources and storage times. In short, these are not issues that can
conclusively be addressed by any modeling strategy.

Cost representation in Integrated Assessment Models
To understand how models feature technology characteristics, consider a stylized version of
generation cost, with only one time period and without discounting. This is close to how RE-
MIND models technologies, only that summation over the whole energy system happens ,rst
(Luderer et al. 2015). This may or may not alter the system outcome, but that is irrelevant for
the question here.
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4 + 5" + 6"

2%7 (", 8)+
(11)

The generation cost are the sum total of installation cost 4 , the operation and maintenance
cost 5" , typically zero for fuel-based production technologies, and variable cost (or fuel) 6" , al-
ways zero for RES. The total energy conversion output is given by the conversion e*ciency 8
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times the annual primary energy input %7 (", 2), times the total technology lifetime + . The en-
ergy input is a function of time for fuel-based technologies, and a function of the capacity factor
2, for intermittent sources such as RES. Table 6 summarizes how the models treat these di.er-
ent characteristics of energy supply technologies. In reality, none of these metrics are ,xed for
any technology, not even in global averages (IRENA 2021). However, the nuances play a more
subtle role besides underestimating cost improvements. Except for IMAGE and REMIND,
all models implicitly assume a slowing down of learning-by-doing, even when a Wright’s Law
speci,cation is chosen. This is because Operational Expenditure (OpEx) are assumed to be
constant and nonzero. As the technology progresses, a larger fraction of the cost is unchanging,
analogous to the DeJong model (equation (7)). The former two models do not behave like that
because ,xed OpEx are either zero (IMAGE) or a fraction of the installation cost (REMIND).
Improvements in output are ruled out in all models except GCAM and POLES. The former
allows for exogenous progress and the latter assumes a progression path for wind turbines. It is
not straightforward whether ,xed performance assumptions have large e.ects. Changing tech-
nology characteristics can, in reality, make certain resources viable – the obvious case being wind
turbines. But in a cost-driven model this could conceivably have the same e.ect as assuming the
equivalent cost improvement – given that learning rates are calibrated to match generation cost.
This would ultimately depend on the structure of the underlying supply curve and may only
matter in edge cases.

Table 6: Technology Characteristics in Integrated Assessment Models
CapEx OpEx performances

Installationa Capitalb Fixedc Variabled Capacity Factor E*ciency Lifetime
4 & 5! 6! 2 8 +

REMIND endogenous constant endogenous market constant constant "
MESSAGE exogenous " constant " " " "
IMAGE endogenous " 0 " " " "
POLES " " constant " exogenouse " ,xed
WITCH " " " " constant " ,xed
GCAM exogenous " " " exogenousf " exogenousf

Technology characteristics in the sample IAMs. (a) Cost of physical capital (overnight), core learning-by-doing variable. (b) Regionally
di.erentiated ,nancing cost, pure cost of capital. (c) Operational and maintenance cost, only applies to RES. (d) Fuel cost, global fuel supply
curves and carbon tax, or endogenous (biofuels). (e) Supply curve based on spatial resource quality, (e) Only applies to wind turbines. In
POLES turbines grow over time, mirroring the development in ,gure 3. (f) GCAM allows for the prescription of gradual improvement in
performance dimensions. Sources: Model documentations, see table 2.

Accounting for technical change on a per-variable basis is obviously no sensible choice given
the sparse data and harmonization issues involved. But implying by design that technologies
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only change in terms of their installed cost has no theoretical or empirical basis at all. Overall,
every model employs a very narrow scope of learning. The cost of ,nance is static in all mod-
els, despite showing learning e.ects in studies (,gure 3), being expected to play a major role
in emerging markets and developing countries (IEA 2022) and arguably representing a major
policy lever. This poor representation of technology characteristics does not at all match recent
evidence and urgently needs updating.

4.4 Interactions with Other Model Features

This section brie+y discusses three issues that would arguably mostly in+uence deployment
paths and not so much cost forecasts in scenarios. The general sense is that deployment forecasts
have improved recently, but they could increasingly depend features that do not re+ect recent
evidence either IAMs (Way et al. 2022; Victoria et al. 2021; Bogdanov et al. 2021). The issues
discussed here are very poorly described in model documentations, so the discussion here is kept
brief and qualitative.

Non-constant marginal deployment cost
One component of what Grubb et al. (2021b) describe as dynamic realism is the idea of iner-
tia, meaning that abatement cost increase with the amount abated in a given time period (see
section 4). A plausible reason for this is that supply chains cannot ramp up instantaneously
because they encounter macroeconomic bottlenecks. This is something models have incorpo-
rated, if maybe only for the purpose of smoothing out results: REMIND includes technology-
level cost mark-ups in order to achieve "a more realistic phasing in and out of technologies"
(Luderer et al. 2015, p. 21). This might seem like a reasonable abstraction, but the exact na-
ture of these constraints is, once again, poorly documented compared to their potentially large
role in simulation outcomes. It could, for example, be a step-wise function over the percentage
increase in deployment.

But economic theory allows a few general remarks on such cost mark-ups. The main rea-
son we would suspect costs to rise in this fashion are capacity constraints in production inputs:
Physical capital, labor, intermediate inputs and raw materials. All these inputs are usually not
modeled at all in IAMs, at least not in the sample discussed here.39 In macroeconomic theory

39GEM-E3 features a partial representation of material +ows and there are modular extensions for the other mod-
els as well (Capros et al. 2013). However, this usually serves the purpose of estimating the environmental
footprint and resource needs of scenarios, not as a feature of the economic input-output structure.
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capacity is obviously a very important, albeit ill-de,ned constraint. Schools of thought may dis-
agree on whether a fast transition is subject to frictions, and where they originate from (for a
recent EU-centered review, see Pollitt et al. 2017). There is good evidence that fears of in+ation-
ary drivers stemming from decarbonization are not warranted, and energy system studies like
Way et al. (2022) are part of this evidence. But there is certainly room for reasonable disagree-
ment.

Table 7: World Power Generation by Source

Source
Total Generation (PJ) Annual growth rate

2000 2010 2021 2000-2010 2010-2021
Bioenergy 533 1166 2398 8% 7%
Oil 4219 3416 2736 -2% -2%
Solar 4 112 3676 41% 37%
Wind 112 1246 6653 27% 16%
Nuclear 9025 9670 9857 1% 0%
Hydro 9443 12283 15214 3% 2%
Gas 9770 17071 22745 6% 3%
Coal 20588 30110 36400 4% 2%
World annual electricity production by source and respective implied growth rate (compound annual) show the radically
di.erent states the various production chains are in today. Source: Own calculations based on BP (2022).

On an industry level however, this is an entirely di.erent matter: There is no reason to believe
that any given supply chain cannot get used to sustained high growth rates. Firm level evidence
suggests that certain sectors are better than others in absorbing shocks, notably those experi-
encing seasonal demand variations and those with complex supply chains (Cachon et al. 2007).
But these e.ects are entirely unrelated to sectoral long-term productivity trends. Table 7 shows
past growth trends in power generation by source. No economic theory would suggest that
the overall cost trajectory of these technologies is a.ected by the speed of these trends. This can
mean two things for the way IAMs model this "friction". If it is a function of absolute growth
percentages for all technologies combined, there is an inherent bias against fast-growing power
sources. Modelers may overcome that by calibrating on past per-technology growth rates. But
of course growth trends can increase over the course of the energy transition, which is what we
can likely expect from energy storage solutions (Battery and PtX). Alternatively, friction could
be a function of changes in the growth rates. This would at last prevent persistent biases.

REMIND documentation makes direct mention of such constraints. Krey et al. (2020)
vaguely mentions "technology di.usion constraints" for MESSAGE. It is unclear whether these
are administered through cost or direct deployment limitations. The functional cost speci,ca-
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tions of technologies in WITCH and IMAGE seem to work similarly to REMIND. For the
other models there is no mention of such restrictions, but this could be due to poor documen-
tation. BothWay et al. (2022) and Jaxa-Rozen andTrutnevyte (2021)mention these restrictions
in a broader sample of IAMs. Whether these constraints show up in cost projections depends
on how the model output is de,ned: If it is averaged over the existing capital, then scenarios
would show an upward cost bias.

Nesting Structure, Substitution and System Constraints
The exact structure of models could matter quite a bit when it comes to technology adoption,
especially in later stages of the energy transition (Sognnaes et al. 2021). Unfortunately this is also
an area where model documentation is lacking. Only two models speci,cally demonstrate the
underlying nesting structure, REMIND and WITCH (Luderer et al. 2015; Drouet et al. 2019).
Instead of a typical cost-based Constant Elasticity of Substitution (CES) structure, other mod-
els, such as MESSAGE and IMAGE use +exibility coe*cients for various technologies and then
impose a target range for the overall energy supply (Stehfest et al. 2014; Krey et al. 2020). To
entangle how these work in detail is not trivial at all, but some general remarks are still possible.
For demonstration purposes, consider the structure of the WITCH model in ,gure 4 because
it employs all types of constraints and is well documented.

A sensibility analysis by Carrara and Marangoni (2017) even mention that results in WITCH
are highly sensitive to the nesting structure and values for the substitution elasticity. The nest-
ing structure determines whether certain interactions are "physically" possible or not. For ex-
ample, demand in WITCH is discrete and perfectly in+exible: There are no sectoral linkages
downstream of the electricity supply. This is di.erent in REMIND, where transportation is di-
rectly coupled to the power sector (Luderer et al. 2015). As to the elasticity, presumably a value
of 2 is considered a common choice for energy technologies. But disagreements arise what to
choose for fossil versus renewable sources. A sensitivity analysis for a baseline case ,nds gener-
ation shares of wind and solar between 2% and 30% for an elasticity of 2 and 10 respectively, in
2050 (Carrara and Marangoni 2017). These are very signi,cant di.erences and should not be
underestimated, particularly as they interact with learning dynamics.

WITCH also imposes two constraints, a +exibility and a capacity constraint. The former
ensures a su*ciently stable supply in lieu of detailed modeling of temporal matching of power
sources and demand. The latter is basically an energy security provision that only a.ects in-
stalled capacity, not generation. All three factors combined a.ect substantially the power out-
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put, system costs and installed capacity (Carrara and Marangoni 2017). Just as with learning
rates, calibration estimates have to comply to the model structure. This is assuming that the
model structure itself does not induce biases and instabilities, a phenomenon Thompson and
Smith (2019) calls the hawk moth e!ect in the context of coupled climate-economy models.

Figure 4: Nesting Structure of the WITCH Model

Compacted structure, excluding backstops. Numbers refer to upstream elasticity of substitution – It is assumed to be in,nite where not
otherwise speci,ed. All technologies are comprised of capital with vintage. Backstops are usually perfectly substitutable competitors to their
counterparts (e.g. Coal versus Coal+CCS), only subject to capital vintage. In the REMIND model, technologies provision useful energy
linearly and are not subject to a nested structure. They can be thought of as Leontief inputs instead, but the upstream technology is subject to
substitution (e.g. electric and combustion cars). Source: Own (compacted) illustration based on Drouet et al. (2019).

More recent energy system studies make very di.erent assumptions in the model structure
to account for progress in storage technologies and demand +exibility (Bogdanov et al. 2021).
This seems to mostly a.ect deployment results in the tail end, but it must be kept in mind
that the system cost structure is directly co-determined by these assumptions – and so are the
macroeconomic aggregates reported in IPCC scenarios.

Solution Algorithm, Optimization and Temporal Resolution
Another issue is the complex interactionof thewaymodels,nd solutions and trace the temporal
dynamics of scenarios. These links are impossible to entangle from one another, so I discuss
them in tandem. On paper, they would also be a perfect question to explore in model sensitivity
analyses, but to the author’s knowledge, only REMIND allows for +exible time steps. For the
others, temporal resolution is hard-wired to accommodate for the need of long-term projections
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(Carrara and Marangoni 2017). A peculiar case is POLES, where the electricity sector is run on a
two-hourly time step, while theothers are runningon a yearly basis. Default scenario increments
are usually quite high between ,ve and ten years (Krey et al. 2020; Luderer et al. 2015; Drouet
et al. 2019; Stehfest et al. 2014).

The harsh trade-o.s between structural realism, temporal realism, computation times and
solution stability is quite well known in the modeling community, a phenomenon sometimes
referred to as the curse of dimensionality (Maliar and Maliar 2014). In essence, the precision of
solutions can drastically degrade when reducing time steps and solutions have to be approxi-
mated somehow. This is crucial for elements of the system where compounding occurs, which
is the case for learning-by-doing dynamics. Cai et al. (2012) demonstrated with DICE that
the ad-hoc approximation of IAMs, that treat the economy as a discrete time system produce
large inaccuracies. For large-scale IAMs in use today, e*cient numerical methods have to be
applied. REMIND and MESSAGE documentation make mention of these problems and how
they are addressed in principle, but it is not at all clear that accurate solutions are employed
at the microeconomic scale. Given that discrete linearization can save heavily on computation
time, even compared to e*cient numerical methods (Maliar and Maliar 2014), this could be a
trade-o. modelers are willing to take on smaller scales. A bias against nonlinear relations and
thus against fast-learning technologies would be the result. Grubb et al. (2021b) notes that in
the last assessment cycle, many simulations were run without learning, exactly to save on com-
putation time, so the modeling community has readily made these trade-o.s in the past. ESM
studies typically produce lower cost in model runs, as the trade-o. is usually made in favor of
temporal resolution, and they do not feature demand sector linkages at all (Way et al. 2022).

ESMs in general have had a back-and-forth relationship with IAMs. Structural assumptions
in the latter about how to handle intermittent sources and how to link sectors with one an-
other were based on more ,ne-grained energy system studies (Luderer et al. 2015; Carrara and
Marangoni 2017). Above all, this concerns how grid integration of intermittent sources is ap-
proximated, since ESM can more readily analyze typical load structures and how to provision
for them. But this has turned around in more recent studies that take a closer look at how sec-
tors can be linked with one another since demand curtailment and load services can be provided
by other sectors like industry and transport. In general, the conclusions about temporal resolu-
tion and the role of intermittent producers weaken signi,cantly with sector linkages (Bogdanov
et al. 2021; Shirizadeh and Quirion 2022). This does not mean that IAMs need a more com-
plex structure and increased temporal resolution to yield better results. These are not issues that
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can be solved completely – rather they speak to the systemic nature of decarbonizing the world
economy (Hoekstra et al. 2017). But structural calibrations need to be kept up to date, as their
importance for policy grows.

4.5 Beyond Energy Supply: Demand Side Technologies

An underappreciated upside of the need for net zero is that it simpli,es the choice of how to re-
duce anthropogenic emissions. In the climate science community there is little doubt that active
CDR will be a requirement for stabilizing the climate (Allen et al. 2022; Baum et al. 2023).40

There is no doubt that unabated fossil fuel use has to be stopped entirely, and that abated fossil
fuel use has to be minimized to insigni,cant proportions in order to conserve limited carbon
capture capacities (IPCC AR6 2022, ch. 1).41 This includes non-energy use of fossil fuels in
buildings (≈ 5 Gt CO2E), and transport (≈ 8 Gt CO2E). It further implies that industrial pro-
cess emissions (≈ 9 Gt CO2E) have to stop entirely or be abated by CCS. This dramatically
reduces the degrees of freedom for a decarbonized economy, which also applies to technology
choices. The IEA track progress in key technological areas spanning across sectors and, by and
large, all of them feature to some extent in any IPCC scenarios (IEA 2023; IIASA 2022)

It is no coincidence that ESM studies increasingly studied sectoral linkages, which is what this
section will brie+y discuss. What does technical change and the progress in RES technologies
– which has been a focal point of this paper – mean for future scenarios and modeling work?
From a systemic perspective the combination of economically viable non-dispatchable produc-
tion and reliable storage splits up these two function of the energy system, thereby o.ering an
increased number of ways to organize energy services (Way et al. 2022). A static representation
of demand with grid integration mark-ups, which all the models employ, probably misses many
of the nuances. This arguably has signi,cant consequences for scenario-level aggregates.

Figure5 shows the electricity share in,nal energydemandprojected in the IPCCAR6 (2021)
IMPs and the scenario range.42 As a rough point of comparison, a recent cost-e*cient scenario
by Bogdanov et al. (2021) sees electri,cation in heating alone at about 75% in 2050, higher

40The exact amount that will be needed is technologically statistically, and socioeconomically uncertain, but there
is currently no Paris compliant IPCC scenario without Gigaton scale CDR (IIASA 2022).

41An edge case for fossil fuel use is the chemical industry, where some of it is used as a feedstock for production.
This has varying implications for end-use emissions: Fertilizers are responsible for the majority of nitrous oxide
emissions, while the worst environmental impacts of polycarbonates production are arguably not the residual
emissions from production.

42A full narrative description fo IMPs can be found in IPCC AR6 (2021, ch. 1)

42



Figure 5: Electri$cation in IPCC Scenarios

Percent share of electricity in ,nal energy demand for the Paris compliant Illustrative Mitigation Pathways. IMP-Neg: Focus on negative
emissions. IMP-LD: Focus on demand reduction and e*ciency. IMP-SD: Focus on alignment with sustainable development goals. IMP-GS:
Focus on near-term alignment with Nationally Determined Contributions (NDCs). IMP-REN: Focus on rapid deployment of renewable
energy. Grey Area: Maximum and minimum among Paris-compliant Scenarios. Source: IIASA (2022), own calculations.

than any scenario predicts for the whole power sector in IPCC AR6 (2021). Final energy is
downstream of many conversion processes in industry, heating and transport, and so gives a
rough picture of how much energy use is covered directly by electric power. A cheap power
system, such as modeled in Way et al. (2022), is not anticipated in any of these and so would
likely exceed these projections in a Paris-compliant pathway. This would have two rami,cations:
(i) It further narrows the band of critical technologies that play a major role in decarbonization,
and (ii) it would induce positive feedback between demand and supply side technologies, given
that learning e.ects can be exploited on the demand side as well.

With very few exceptions, the IAMs in the sample only feature rudimentary energy demand
sectors. REMIND has a detailed transport sector module, but lumps together stationary energy
demand sectors (Luderer et al. 2015). WITCH models industrial, residential and commercial
non-electric energy demand as static backstops to fossil fuel combustion (Drouet et al. 2019).
MESSAGE models all these sectors in a stylized way, with the energy sector providing carriers
(fuel) with or without emissions. Historically, these were perfectly valid simpli,cations given
the leverage of the energy sector. But they currently hide too much systemic interactions made
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possible by cheap decarbonized electricity.

Electri$cation of Transport
In transportation, the primary drivers of electri,cation will certainly be the adoption of BEV.
Many IAM scenarios instead still see biofuels covering major shares of transportation energy,
with shares ranging from about 10-40% in 2050 (IIASA 2022). This is an area that needs revis-
iting: Today the direction of the car industry and the competitiveness of synthetic fuels (derived
from electricity) seem to be rather certain, reduce environmental trade-o.s inherent to biofuels
and enable much needed reuse of captured CO2 (IEA 2023). The assumptions made for these
sectoral couplings in IAM will very likely prove untenable. For example, in WITCH, BEV are
subject to an ad-hoc learning-by-searching implementation, while Way et al. (2022) demon-
strate strong learning-by-doing dynamics for batteries. REMIND covers this conceptually, but
also implements a frictional term for switching, such as discussed in section 4.4. It is impossible
to say how updating assumptions here would in+uence macroeconomic, or even sectoral out-
comes. But again: given the strong feedback dynamics of electri,ed transportation, there could
be sizable impacts. The sector would also continue to be a major driver of growth and rebound,
matching the challenging trajectories in the past (IPCC AR6 2021, ch. 10).

Electri$cation of Industry
Industrial production is widely regarded as a major bottleneck for decarbonization, primarily
because of the technical uncertainties and long-term capital investments necessary (IEA 2022).
The latter is a major driver of technological lock-in and the policy guardrails for transitioning
the sector will have to be de,ned sooner rather than later (Seto et al. 2016). Heavy industry is
also a major driver of total energy consumption, and so the e.ects of electrifying industrial pro-
cesses would be sizable. The problem is that many processes, such as metal smelting, ceramics
and cement production mostly require heat, where traditionally, combustion processes have a
large advantage over electricity. But a recent EU-centered study shows that almost 99 percent
of industrial energy demand could technically be switched to electricity (Madeddu et al. 2020).
Some of the alternative processes provide the co-bene,t of being more conducive to secondary
material routes enabling a circular economy. The key is that even though electri,cation is a
technological option, the economics behind it are not fully clear yet. Neither the scheme of
complexity and customization developed by Malhotra and Schmidt (2020) nor the notion of
mass scalability would expect learning e.ects in these industrial processes. However, depending
on the future cost of power, industry would provide additional demand and induce learning in
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the energy system itself. The impact on macro aggregates is not at all straightforward: In gen-
eral, power-to-heat processes are very e*cient and so can drive down the energy intensity of the
economy (IPCC AR6 2022, ch. 11). But especially in the case of industrial capital this is not the
result of smooth processes like e*ciency learning implementations discussed above would sug-
gest. Rather, these decisions lock in physical capital for upwards of 25 years (IPCC AR6 2022,
ch. 11). Economic models typically would use what is called capital vintage or a putty-clay struc-
ture for this purpose, but none of the IAMs use this level of detail for industrial production. A
generic demand sector will probably mask the opportunities for power sector coupling and the
resulting learning e.ects (Luderer et al. 2015; Drouet et al. 2019; Capros et al. 2013; Stehfest
et al. 2014).

Electri$cation of Heating
The potential for electrifying heating, mainly via heat pumps, has been discussed for decades.
Empirical studies are limited, but arguably su*cient to characterize thepotential at least roughly
in integrated assessment models. Weiss et al. (2010) identi,es two early studies that ,nd learning
rates of over30%for residential heat pumps. More recently, Junginger andLouwen (2020) takes
a more varied data set into account and ,nds slightly lower but comparable results of around 20-
25%. Studies note similar technology-speci,c conceptual problems I have discussed here. But
heat pumps are undoubtedly a key technology for decarbonization in the future and increas-
ingly attract policy attention around the world (OECD and IEA 2022). Given that residential
applications ,t well into the criteria by Malhotra and Schmidt (2020) and production is scal-
able, there is no reason todoubt the empirical data. For IAMs scenarios, electri,edheating could
have major macroeconomic implications. OECD and IEA (2022) only project a 2% increase in
electricity demand from a doubling of current heat market shares. But heating is considered
one of the applications that could provide +exible demand and so lower system integration cost
of RES (Bogdanov et al. 2021). The thermal work is mostly coming from the environment in
heat-pumping systems, and so adoption will enhance primary energy e*ciency by de,nition.
Just as with industrial processes, past model projections could be vindicated because of that –
but they would be correct in the aggregates for the wrong reasons.
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5 Conclusion

Large-scale IAMs were initially never designed to inform climate policy in a comprehensive and
detailedmanner. Rather, their purposewas to,ndplausible, aggregate economic forecasts given
the constraints of the climate, without too much regard for the underlying structure of the
energy system (Way et al. 2022). The latter merely served as a guardrail. But as it turns out,
technology assumptions have rendered aggregate trend predictions wildly inaccurate, and the
IPCC assessment cycle is far too slow to address this in a timely manner. This, no less, at a
time when IAMs are increasingly relied upon to devise detailed sectoral pathways to a net zero
economy.

Some have called for IAMs to be scrapped entirely (Pindyck 2017), others have started work
on expanding the model base (Hoekstra et al. 2017; Farmer et al. 2015; Dafermos and Nikolaidi
2022). The former is wildly impractical, the latter will hopefully prove successful in advanc-
ing our collective understanding of the challenges of decarbonizing the world economy. In the
meantime, we are stuck with a set of highly complex assessment tools no single human can claim
full understanding of (Ives 2021). Their importance will likely only grow. Critical examination
of model output will be an important part of the scienti,c work surrounding decarbonization
scenarios and well established tools to do so exist today (Koomey et al. 2019; Sognnaes et al.
2021).

Modelers, on the other hand, must do their part. Better and more comprehensive model
documentation is urgently needed. Major +aws in the representation of the energy-economy
system, such as discussed here, have to be addressed transparently. Modelers have presumably
adjusted cost +oors multiple times in the past but without any comprehensive addressing of the
theoretical +aws (Way et al. 2022). Given the prominent role these models play, timely adjust-
ments are important. But they cannot be conducted in such a manner that they perpetuate
structural biases that have been well documented for close to a decade.

This paper has identi,ed several drivers of poor technology forecasts in IPCC mitigation sce-
narios. Calibrations do not re+ect current evidence, scope and scale of technical change are
poorly captured, inertia assumptions and cost +oors rest on shaky empirical grounds and struc-
tural assumptions make it impossible to capture major features of future energy systems. The
best way to address these shortcomings would be a scenario architecture that puts far more
weight on short-term realism, respecting historical trends. This is somewhat at odds with how
IAM are used in IPCC mitigation assessments, but combining these two prospects seem like
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the most fruitful avenue for improvement in the utility of these policy tools.
In terms of mitigation policy, the consequences of this mismatch have roughly been spelled

out in numerous other studies. Energy economy rebounds will be stronger than expected, with
the associated advantages and disadvantages, and RES will be a strong driver of growth in the
coming decades. The potential for electri,cation will prove to be large in many demand sectors.
But as with RES before this will not happen on its own, at least not initially. The corresponding
macroeconomic and wider social assessment is also quite straightforward. Much greater focus
needs to lie on transitional dynamics and less on a comparative static between net zero and the
economy of today. Above all, cheap low-carbon energy gives us urgently needed tailwind to
achieve a stabilized climate in the middle of this century.

6 Appendix

Levelized Cost and Cost of Capital
The LCOE is the most commonly used levelized cost metric, designed to measure the cost of
provision of end-use electricity for a given technology. It essentially represents what investors
would have to be paid in order to provide a given amount of energy (often denoted in USD per
Watt hour).

LCOE =
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It is the total cost !+ over the total energy produced %+ over the lifetime + . Costs are com-
prised of the sum of all investment expenditure 4" annual operational cost 5" and variable, or
fuel cost 6" . Electricity production is usually estimated based on a capacity factor 2 and the
nominal yield %9 of a technology. Both terms are discounted by & , often a risk adjusted and
debt-to-equity weighted discount rate, the WACC. In practice, investors and power companies
– unsurprisingly – use a variety of di.erent approaches to assess risk that are not always based
on formal, mainstream capital theory (Hürlimann et al. 2020). In contrast, IAMs and ESMs
discount rate assumptions are typically very ad-hoc, and merely di.erentiate two or three world
regions. For example, IRENA (2021) uses a value of 5% for OECD countries and China and
7.5% for the rest of the world. Levelized cost metrics are very sensible to discounting assump-
tions (IEA 2022).
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There are substantial di*culties in harmonizing these cost metrics, and the technological
characteristics as well as the exact accounting of source data can drive a lot of deviation. A
strength of the data from IRENA (2021) are detailed and harmonized surveys on OpEx. Ray
(2021) publishes an annual investor-focused report with a detailed breakdown of internal and
external capital cost. Bolinger et al. (2022) normalize by taking commodities market data and
macroeconomic conditions into account. As discussed in section 4.3, capital cost are partly a
policy variable, because appropriate policy tools can reduce market failure. The LCOE itself
is not "the" optimal measurement of economic value, and cannot capture fully the progress
inherent to a given technology.

Causality Bias in Learning Rate Estimates
In the context of climate models, Nordhaus (2014) raised causality issues surrounding the learn-
ing curve literature. Given that most estimates relied on univariate speci,cations of Wright’s
Law, it is reasonable to ask whether it could be confounded by exogenous factors. For ease of
exposition it is useful to refer to the formal model constructed by Nordhaus (2014). A combi-
nation of exogenous and endogenous learning, which is plausible ad-hoc for most technologies,
would look like the following.

!" = !0'−*" -−.
Σ (12)

This is just a combination of equations (3) and (5). The cost rate of change at " can then be
given by

:̂" = * + .-̂Σ, (13)

where :̂ and -̂Σ denote the growth rates, respectively. If, additionally, demand grows over
time and from substitution due to reductions in cost, output growth would follow

-̂Σ = ; :̂" + ," , (14)

with ; as the (constant) elasticity of demand and ," as any exogenous demand increase, for
example due to income growth. Combining both it can be shown that the resulting estimator
for the pure learning coe*cient, .̄, would look like the following.

.̄ =
:̂
-̂Σ

=
* + .,"

;* + ,"
(15)
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In this case, if we would estimate a pure univariate learning curve, the resulting .̄ would
confound exogenous learning, demand growth, substitution and the "real" underlying learning
rate .. If the above model is assumed, bias from exogenous learning can be either positive or
negative, depending on the elasticity ; . The elasticity itself plays a very di.erent role, however.
In this speci,cation, for ; < 1 it would bias the estimator upward, while for ; > 1 it would bias
it downward. Nordhaus (2014) was mostly concerned with the underestimation of mitigation
cost resulting from biased learning assumptions.

Stochastic formulation of technical change
Farmer and Lafond (2016) show how error propagation can be used for a stochastic formulation
of technical progress. A similar method is used in Lafond et al. (2018), Lafond et al. (2020),
and Way et al. (2022), so it is worth demonstrating. The method is analogous for any of the
speci,cations discussed in section 4.2, for example Moore’s Law in equation (3).

!" = !0'*" (16)

The deterministic variant of Moore’s Law above can be estimated with the following model:

log !" = log !0 + *" + 9" , (17)

where 9" is a noise term. In this case, noise cannot accumulate, meaning that two draws
!"1,"2 for any ["1, "2] are always independent. But this would mean that a surprise discovery in
a technology path is always o.set by preceding or subsequent surprises in the other direction.
Another possibility would be that any such deviations are only temporary +uctuations, such
that there are no real discoveries about the underlying technology – only the steady march of
predictable progress. Both interpretations are based on very strong assumptions. Instead, a
random walk model can be used:

log !" = log !"−1 + * + 3" , (18)

in which 3" is also a non-accumulative noise term. In the regression, 9" and 3" behave ex-
actly the same, but the estimator for !" is only dependent on !"−1 respectively. The iterative
formulation, rewritten from 18 as a function of -0 then allows for the noise to propagate.
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log !" = log !0 − *" +
"∑

<=1
3< (19)

Summation of the error terms 3< allows for previous shocks to persist. This model behaves
like a true forecast: the further out the estimates are from any observed time frame, the larger
the cumulative error becomes. Statistically, for any arbitrarily small error in the estimator of
equation 17, the estimand leaves a given con,dence range after a ,nite time frame. This is not
the case in the random walk model. Treating technology forecasting as a stochastic process ob-
viously adds another layer in computational complexity to current IAM, but it also stands in
stark contrast to current modeling philosophy in general.
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